Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is not equivalent to 
cot ((pi)/(6)) ?

cot ((13 pi)/(6))

cot ((11 pi)/(6))

cot ((7pi)/(6))

cot(-(11 pi)/(6))

Which of the following is not equivalent to cotπ6 \cot \frac{\pi}{6} ?\newlinecot13π6 \cot \frac{13 \pi}{6} \newlinecot11π6 \cot \frac{11 \pi}{6} \newlinecot7π6 \cot \frac{7 \pi}{6} \newlinecot(11π6) \cot \left(-\frac{11 \pi}{6}\right)

Full solution

Q. Which of the following is not equivalent to cotπ6 \cot \frac{\pi}{6} ?\newlinecot13π6 \cot \frac{13 \pi}{6} \newlinecot11π6 \cot \frac{11 \pi}{6} \newlinecot7π6 \cot \frac{7 \pi}{6} \newlinecot(11π6) \cot \left(-\frac{11 \pi}{6}\right)
  1. Periodicity Understanding: Understand the cotangent function's periodicity.\newlineThe cotangent function has a period of π\pi, which means cot(θ)=cot(θ+kπ)\cot(\theta) = \cot(\theta + k\pi) for any integer kk.
  2. Evaluate cot(π6)\cot(\frac{\pi}{6}): Evaluate cot(π6)\cot(\frac{\pi}{6}). The cotangent of π/6\pi/6 is the reciprocal of the tangent of π/6\pi/6. Since tan(π/6)=33\tan(\pi/6) = \frac{\sqrt{3}}{3}, cot(π/6)=33=3\cot(\pi/6) = \frac{3}{\sqrt{3}} = \sqrt{3}.
  3. Evaluate cot(13π6):</b>Evaluate$cot(13π6)\cot\left(\frac{13\pi}{6}\right):</b> Evaluate \$\cot\left(\frac{13\pi}{6}\right). Using the periodicity from Step 11, we can subtract π\pi (6π6\frac{6\pi}{6}) from 13π6\frac{13\pi}{6} to find an equivalent angle within the first period: cot(13π6)=cot(13π62π)=cot(7π6)\cot\left(\frac{13\pi}{6}\right) = \cot\left(\frac{13\pi}{6} - 2\pi\right) = \cot\left(\frac{7\pi}{6}\right).
  4. Evaluate cot(11π6)\cot(\frac{11\pi}{6}): Evaluate cot(11π6)\cot\left(\frac{11\pi}{6}\right). Using the periodicity from Step 11, we can subtract π\pi (6π6\frac{6\pi}{6}) from 11π6\frac{11\pi}{6} to find an equivalent angle within the first period: cot(11π6)=cot(11π6π)=cot(5π6)\cot\left(\frac{11\pi}{6}\right) = \cot\left(\frac{11\pi}{6} - \pi\right) = \cot\left(\frac{5\pi}{6}\right).
  5. Evaluate cot(7π6):</b>Evaluate$cot(7π6)\cot\left(\frac{7\pi}{6}\right):</b> Evaluate \$\cot\left(\frac{7\pi}{6}\right). Using the periodicity from Step 11, we can subtract π\pi (6π6)\left(\frac{6\pi}{6}\right) from 7π6\frac{7\pi}{6} to find an equivalent angle within the first period: cot(7π6)=cot(7π6π)=cot(π6)\cot\left(\frac{7\pi}{6}\right) = \cot\left(\frac{7\pi}{6} - \pi\right) = \cot\left(\frac{\pi}{6}\right).
  6. Evaluate cot(11π6):</b>Evaluate$cot(11π6)\cot\left(-\frac{11\pi}{6}\right):</b> Evaluate \$\cot\left(-\frac{11\pi}{6}\right). Using the periodicity from Step 11, we can add π\pi (6π6\frac{6\pi}{6}) to 11π6-\frac{11\pi}{6} to find an equivalent angle within the first period: cot(11π6)=cot(11π6+π)=cot(5π6)\cot\left(-\frac{11\pi}{6}\right) = \cot\left(-\frac{11\pi}{6} + \pi\right) = \cot\left(-\frac{5\pi}{6}\right).
  7. Non-Equivalent Cotangent: Determine which cotangent value is not equivalent to cot(π6)\cot\left(\frac{\pi}{6}\right). From the previous steps, we have found that cot(7π6)\cot\left(\frac{7\pi}{6}\right) is equivalent to cot(π6)\cot\left(\frac{\pi}{6}\right). However, cot(5π6)\cot\left(\frac{5\pi}{6}\right) and cot(5π6)\cot\left(-\frac{5\pi}{6}\right) are not equivalent to cot(π6)\cot\left(\frac{\pi}{6}\right) because the tangent (and thus cotangent) of these angles would be negative, as they are in the second and third quadrants respectively, where the cotangent function is negative. Therefore, cot(11π6)\cot\left(\frac{11\pi}{6}\right) and cot(11π6)\cot\left(-\frac{11\pi}{6}\right) are not equivalent to cot(π6)\cot\left(\frac{\pi}{6}\right).
  8. Identify Incorrect Option: Identify the incorrect option.\newlineSince cot(11π6)\cot\left(\frac{11\pi}{6}\right) and cot(11π6)\cot\left(-\frac{11\pi}{6}\right) are both not equivalent to cot(π6)\cot\left(\frac{\pi}{6}\right), we need to choose one of them as the answer. However, the question asks for the one that is not equivalent, and since we have two options that are not equivalent, there is an issue with the question as it assumes there is only one correct answer. Therefore, we cannot determine a single final answer based on the information given.

More problems from Multiplication with rational exponents