Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is not equivalent to 
cot ((3pi)/(8))?

cot(-(13 pi)/(8))

cot ((5pi)/(8))

cot ((19 pi)/(8))

cot ((11 pi)/(8))

Which of the following is not equivalent to cot3π8? \cot \frac{3 \pi}{8} ? \newlinecot(13π8) \cot \left(-\frac{13 \pi}{8}\right) \newlinecot5π8 \cot \frac{5 \pi}{8} \newlinecot19π8 \cot \frac{19 \pi}{8} \newlinecot11π8 \cot \frac{11 \pi}{8}

Full solution

Q. Which of the following is not equivalent to cot3π8? \cot \frac{3 \pi}{8} ? \newlinecot(13π8) \cot \left(-\frac{13 \pi}{8}\right) \newlinecot5π8 \cot \frac{5 \pi}{8} \newlinecot19π8 \cot \frac{19 \pi}{8} \newlinecot11π8 \cot \frac{11 \pi}{8}
  1. Periodicity of Cotangent Function: Understand the cotangent function's periodicity. The cotangent function has a period of π\pi, which means cot(θ)=cot(θ+kπ)\cot(\theta) = \cot(\theta + k\pi) for any integer kk.
  2. Evaluate 13π8-\frac{13\pi}{8}: Evaluate cot(13π8)\cot\left(-\frac{13\pi}{8}\right). Using the periodicity of the cotangent function, we can add π\pi to the angle until it is positive: cot(13π8)=cot(13π8+2π)=cot(3π8)\cot\left(-\frac{13\pi}{8}\right) = \cot\left(-\frac{13\pi}{8} + 2\pi\right) = \cot\left(\frac{3\pi}{8}\right) This is because adding 2π2\pi is the same as adding π\pi twice, which does not change the value of the cotangent function.
  3. Evaluate (5π)/(8)(5\pi)/(8): Evaluate cot((5π)/(8))\cot((5\pi)/(8)). Using the periodicity of the cotangent function, we can add π\pi to the angle: cot((5π)/(8))=cot((5π)/(8)+π)=cot((13π)/(8))\cot((5\pi)/(8)) = \cot((5\pi)/(8) + \pi) = \cot((13\pi)/(8)) This is not equivalent to cot((3π)/(8))\cot((3\pi)/(8)) because we have added π\pi to a different starting angle.
  4. Evaluate (19π)/(8)(19\pi)/(8): Evaluate cot((19π)/(8))\cot((19\pi)/(8)).\newlineUsing the periodicity of the cotangent function, we can subtract π\pi from the angle:\newlinecot((19π)/(8))=cot((19π)/(8)2π)=cot((3π)/(8))\cot((19\pi)/(8)) = \cot((19\pi)/(8) - 2\pi) = \cot((3\pi)/(8))\newlineThis is because subtracting 2π2\pi is the same as subtracting π\pi twice, which does not change the value of the cotangent function.
  5. Evaluate (11π)/(8)(11\pi)/(8): Evaluate cot((11π)/(8))\cot((11\pi)/(8)). Using the periodicity of the cotangent function, we can subtract π\pi from the angle: cot((11π)/(8))=cot((11π)/(8)π)=cot((3π)/(8))\cot((11\pi)/(8)) = \cot((11\pi)/(8) - \pi) = \cot((3\pi)/(8)) This is because subtracting π\pi from the angle does not change the value of the cotangent function.
  6. Determine Non-Equivalent Expression: Determine which expression is not equivalent.\newlineFrom the previous steps, we have determined that cot(13π8)\cot\left(-\frac{13\pi}{8}\right), cot(19π8)\cot\left(\frac{19\pi}{8}\right), and cot(11π8)\cot\left(\frac{11\pi}{8}\right) are all equivalent to cot(3π8)\cot\left(\frac{3\pi}{8}\right). However, cot(5π8)\cot\left(\frac{5\pi}{8}\right) is not equivalent because it is the cotangent of a different angle that is not simply a multiple of π\pi away from 3π8\frac{3\pi}{8}.

More problems from Multiplication with rational exponents