Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is not equivalent to 
cos ((2pi)/(5)) ?

cos ((7pi)/(5))

cos ((8pi)/(5))

cos ((12 pi)/(5))

cos(-(2pi)/(5))

Which of the following is not equivalent to cos2π5 \cos \frac{2 \pi}{5} ?\newlinecos7π5 \cos \frac{7 \pi}{5} \newlinecos8π5 \cos \frac{8 \pi}{5} \newlinecos12π5 \cos \frac{12 \pi}{5} \newlinecos(2π5) \cos \left(-\frac{2 \pi}{5}\right)

Full solution

Q. Which of the following is not equivalent to cos2π5 \cos \frac{2 \pi}{5} ?\newlinecos7π5 \cos \frac{7 \pi}{5} \newlinecos8π5 \cos \frac{8 \pi}{5} \newlinecos12π5 \cos \frac{12 \pi}{5} \newlinecos(2π5) \cos \left(-\frac{2 \pi}{5}\right)
  1. Properties of Cosine Function: Understand the properties of the cosine function. The cosine function is periodic with a period of 2π2\pi, which means cos(θ)=cos(θ+2πn)\cos(\theta) = \cos(\theta + 2\pi n) for any integer nn. Also, cosine is an even function, so cos(θ)=cos(θ)\cos(\theta) = \cos(-\theta).
  2. Evaluate cos(7π5)\cos \left(\frac{7\pi}{5}\right): Evaluate cos(7π5)\cos \left(\frac{7\pi}{5}\right). Using the periodic property of cosine, we can subtract 2π2\pi from 7π5\frac{7\pi}{5} to find an equivalent angle within the range of 00 to 2π2\pi. cos(7π5)=cos(7π52π)=cos(7π510π5)=cos(3π5)\cos \left(\frac{7\pi}{5}\right) = \cos \left(\frac{7\pi}{5} - 2\pi\right) = \cos \left(\frac{7\pi}{5} - \frac{10\pi}{5}\right) = \cos \left(\frac{-3\pi}{5}\right) Since cosine is an even function, cos(3π5)=cos(3π5)\cos \left(\frac{-3\pi}{5}\right) = \cos \left(\frac{3\pi}{5}\right). Now, 3π5\frac{3\pi}{5} is not equivalent to 2π5\frac{2\pi}{5}, so cos(7π5)\cos \left(\frac{7\pi}{5}\right) is not equivalent to cos(7π5)\cos \left(\frac{7\pi}{5}\right)11.
  3. Evaluate cos(8π5)\cos \left(\frac{8\pi}{5}\right): Evaluate cos(8π5)\cos \left(\frac{8\pi}{5}\right). Using the periodic property of cosine, we can subtract 2π2\pi from 8π5\frac{8\pi}{5} to find an equivalent angle within the range of 00 to 2π2\pi. cos(8π5)=cos(8π52π)=cos(8π510π5)=cos(2π5)\cos \left(\frac{8\pi}{5}\right) = \cos \left(\frac{8\pi}{5} - 2\pi\right) = \cos \left(\frac{8\pi}{5} - \frac{10\pi}{5}\right) = \cos \left(\frac{-2\pi}{5}\right) Since cosine is an even function, cos(2π5)=cos(2π5)\cos \left(\frac{-2\pi}{5}\right) = \cos \left(\frac{2\pi}{5}\right). Therefore, cos(8π5)\cos \left(\frac{8\pi}{5}\right) is equivalent to cos(2π5)\cos \left(\frac{2\pi}{5}\right).
  4. Evaluate cos(12π5)\cos \left(\frac{12\pi}{5}\right): Evaluate cos(12π5)\cos \left(\frac{12\pi}{5}\right). Using the periodic property of cosine, we can subtract 2π2\pi from 12π5\frac{12\pi}{5} multiple times until we find an equivalent angle within the range of 00 to 2π2\pi. cos(12π5)=cos(12π52π)=cos(12π510π5)=cos(2π5)\cos \left(\frac{12\pi}{5}\right) = \cos \left(\frac{12\pi}{5} - 2\pi\right) = \cos \left(\frac{12\pi}{5} - \frac{10\pi}{5}\right) = \cos \left(\frac{2\pi}{5}\right) Therefore, cos(12π5)\cos \left(\frac{12\pi}{5}\right) is equivalent to cos(2π5)\cos \left(\frac{2\pi}{5}\right).
  5. Evaluate cos(2π5)\cos \left(-\frac{2\pi}{5}\right): Evaluate cos(2π5)\cos \left(-\frac{2\pi}{5}\right).\newlineSince cosine is an even function, cos(2π5)=cos(2π5)\cos \left(-\frac{2\pi}{5}\right) = \cos \left(\frac{2\pi}{5}\right).\newlineTherefore, cos(2π5)\cos \left(-\frac{2\pi}{5}\right) is equivalent to cos(2π5)\cos \left(\frac{2\pi}{5}\right).

More problems from Multiplication with rational exponents