Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is equivalent to 
tan ((pi)/(5)) ?

tan(-(pi)/(5))

tan ((9pi)/(5))

tan ((4pi)/(5))

tan(-(9pi)/(5))

Which of the following is equivalent to tanπ5 \tan \frac{\pi}{5} ?\newlinetan(π5) \tan \left(-\frac{\pi}{5}\right) \newlinetan9π5 \tan \frac{9 \pi}{5} \newlinetan4π5 \tan \frac{4 \pi}{5} \newlinetan(9π5) \tan \left(-\frac{9 \pi}{5}\right)

Full solution

Q. Which of the following is equivalent to tanπ5 \tan \frac{\pi}{5} ?\newlinetan(π5) \tan \left(-\frac{\pi}{5}\right) \newlinetan9π5 \tan \frac{9 \pi}{5} \newlinetan4π5 \tan \frac{4 \pi}{5} \newlinetan(9π5) \tan \left(-\frac{9 \pi}{5}\right)
  1. Periodicity of Tangent Function: Understand the periodicity of the tangent function. The tangent function has a period of π\pi, which means that tan(θ)=tan(θ+kπ)\tan(\theta) = \tan(\theta + k\pi) for any integer kk.
  2. Comparison with Original Angle: Compare the given angles with the original angle (π/5)(\pi/5) using the periodicity of the tangent function.\newlineWe need to find an angle that differs from (π/5)(\pi/5) by an integer multiple of π\pi.
  3. Analysis: tan((π5))\tan\left(-\left(\frac{\pi}{5}\right)\right): Analyze the first option: tan((π5))\tan\left(-\left(\frac{\pi}{5}\right)\right). The tangent function is odd, which means tan(θ)=tan(θ)\tan(-\theta) = -\tan(\theta). Therefore, tan((π5))\tan\left(-\left(\frac{\pi}{5}\right)\right) is not equivalent to tan(π5)\tan\left(\frac{\pi}{5}\right) because it will have the opposite sign.
  4. Analysis: tan(9π5)\tan\left(\frac{9\pi}{5}\right): Analyze the second option: tan(9π5)\tan\left(\frac{9\pi}{5}\right). Using the periodicity of the tangent function, we can subtract π\pi from 9π5\frac{9\pi}{5} to see if it is equivalent to π5\frac{\pi}{5}. tan(9π5)=tan(9π5π)=tan(9π55π5)=tan(4π5)\tan\left(\frac{9\pi}{5}\right) = \tan\left(\frac{9\pi}{5} - \pi\right) = \tan\left(\frac{9\pi}{5} - \frac{5\pi}{5}\right) = \tan\left(\frac{4\pi}{5}\right). This is not equivalent to tan(π5)\tan\left(\frac{\pi}{5}\right).
  5. Analysis: tan(4π5)\tan\left(\frac{4\pi}{5}\right): Analyze the third option: tan(4π5)\tan\left(\frac{4\pi}{5}\right). This angle is not equivalent to (π5)\left(\frac{\pi}{5}\right) because it is not an integer multiple of π\pi away from (π5)\left(\frac{\pi}{5}\right).
  6. Analysis: tan((9π5))\tan\left(-\left(\frac{9\pi}{5}\right)\right): Analyze the fourth option: tan((9π5))\tan\left(-\left(\frac{9\pi}{5}\right)\right). Using the periodicity of the tangent function, we can add π\pi to ((9π5))\left(-\left(\frac{9\pi}{5}\right)\right) to see if it is equivalent to (π5)\left(\frac{\pi}{5}\right). tan((9π5))=tan((9π5)+π)=tan((9π5)+(5π5))=tan((4π5))\tan\left(-\left(\frac{9\pi}{5}\right)\right) = \tan\left(-\left(\frac{9\pi}{5}\right) + \pi\right) = \tan\left(-\left(\frac{9\pi}{5}\right) + \left(\frac{5\pi}{5}\right)\right) = \tan\left(-\left(\frac{4\pi}{5}\right)\right). This is not equivalent to tan(π5)\tan\left(\frac{\pi}{5}\right) because it is not an integer multiple of π\pi away from (π5)\left(\frac{\pi}{5}\right).
  7. Conclusion: Conclusion.\newlineNone of the given options are equivalent to tan(π5)\tan\left(\frac{\pi}{5}\right) because none of them are an integer multiple of π\pi away from π5\frac{\pi}{5}.

More problems from Multiplication with rational exponents