Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is equivalent to 
sin ((pi)/(6)) ?

sin ((11 pi)/(6))

sin(-(pi)/(6))

sin ((7pi)/(6))

sin(-(11 pi)/(6))

Which of the following is equivalent to sinπ6 \sin \frac{\pi}{6} ?\newlinesin11π6 \sin \frac{11 \pi}{6} \newlinesin(π6) \sin \left(-\frac{\pi}{6}\right) \newlinesin7π6 \sin \frac{7 \pi}{6} \newlinesin(11π6) \sin \left(-\frac{11 \pi}{6}\right)

Full solution

Q. Which of the following is equivalent to sinπ6 \sin \frac{\pi}{6} ?\newlinesin11π6 \sin \frac{11 \pi}{6} \newlinesin(π6) \sin \left(-\frac{\pi}{6}\right) \newlinesin7π6 \sin \frac{7 \pi}{6} \newlinesin(11π6) \sin \left(-\frac{11 \pi}{6}\right)
  1. Properties of Sine Function: Understand the properties of the sine function. The sine function has a period of 2π2\pi, which means sin(θ)=sin(θ+2πk)\sin(\theta) = \sin(\theta + 2\pi k) for any integer kk. Also, sin(θ)=sin(πθ)\sin(\theta) = \sin(\pi - \theta) and sin(θ)=sin(θ)\sin(\theta) = -\sin(-\theta).
  2. Evaluate sin(π6)\sin\left(\frac{\pi}{6}\right): Evaluate sin(π6)\sin\left(\frac{\pi}{6}\right). We know that sin(π6)\sin\left(\frac{\pi}{6}\right) is equal to 12\frac{1}{2} because π6\frac{\pi}{6} is 3030 degrees, and the sine of 3030 degrees is 12\frac{1}{2}.
  3. Compare sin(π6)\sin\left(\frac{\pi}{6}\right) with sin(11π6)\sin\left(\frac{11\pi}{6}\right): Compare sin(π6)\sin\left(\frac{\pi}{6}\right) with sin(11π6)\sin\left(\frac{11\pi}{6}\right). Using the periodic property, sin(11π6)\sin\left(\frac{11\pi}{6}\right) is the same as sin(11π62π)\sin\left(\frac{11\pi}{6} - 2\pi\right) because subtracting 2π2\pi is equivalent to completing one full circle on the unit circle. So, sin(11π6)\sin\left(\frac{11\pi}{6}\right) = sin(11π62π)\sin\left(\frac{11\pi}{6} - 2\pi\right) = sin(π6)\sin\left(-\frac{\pi}{6}\right). Since sin(11π6)\sin\left(\frac{11\pi}{6}\right)00, sin(π6)\sin\left(-\frac{\pi}{6}\right) = sin(11π6)\sin\left(\frac{11\pi}{6}\right)22. Therefore, sin(11π6)\sin\left(\frac{11\pi}{6}\right) is not equivalent to sin(π6)\sin\left(\frac{\pi}{6}\right).
  4. Compare sin(π6)\sin\left(\frac{\pi}{6}\right) with sin(π6)\sin\left(-\frac{\pi}{6}\right): Compare sin(π6)\sin\left(\frac{\pi}{6}\right) with sin(π6)\sin\left(-\frac{\pi}{6}\right). Using the property sin(θ)=sin(θ)\sin(\theta) = -\sin(-\theta), we have sin(π6)=sin(π6)\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right). Therefore, sin(π6)\sin\left(-\frac{\pi}{6}\right) is not equivalent to sin(π6)\sin\left(\frac{\pi}{6}\right).
  5. Compare sin(π6)\sin\left(\frac{\pi}{6}\right) with sin(7π6)\sin\left(\frac{7\pi}{6}\right): Compare sin(π6)\sin\left(\frac{\pi}{6}\right) with sin(7π6)\sin\left(\frac{7\pi}{6}\right). Using the periodic property, sin(7π6)\sin\left(\frac{7\pi}{6}\right) is the same as sin(7π62π)=sin(5π6)\sin\left(\frac{7\pi}{6} - 2\pi\right) = \sin\left(-\frac{5\pi}{6}\right). Since sin(θ)=sin(θ)\sin(\theta) = -\sin(-\theta), sin(5π6)=sin(5π6)\sin\left(-\frac{5\pi}{6}\right) = -\sin\left(\frac{5\pi}{6}\right). And since sin(θ)=sin(πθ)\sin(\theta) = \sin(\pi - \theta), sin(5π6)=sin(π5π6)=sin(π6)\sin\left(\frac{5\pi}{6}\right) = \sin\left(\pi - \frac{5\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right). Therefore, sin(7π6)\sin\left(\frac{7\pi}{6}\right) is not equivalent to sin(π6)\sin\left(\frac{\pi}{6}\right) because of the negative sign.
  6. Compare sin(π6)\sin\left(\frac{\pi}{6}\right) with sin(11π6)\sin\left(-\frac{11\pi}{6}\right): Compare sin(π6)\sin\left(\frac{\pi}{6}\right) with sin(11π6)\sin\left(-\frac{11\pi}{6}\right). Using the periodic property, sin(11π6)\sin\left(-\frac{11\pi}{6}\right) is the same as sin(11π6+2π)=sin(π6)\sin\left(-\frac{11\pi}{6} + 2\pi\right) = \sin\left(\frac{\pi}{6}\right). Therefore, sin(11π6)\sin\left(-\frac{11\pi}{6}\right) is equivalent to sin(π6)\sin\left(\frac{\pi}{6}\right).

More problems from Multiplication with rational exponents