Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which of the following is equivalent to 
sin ((3pi)/(7)) ?

sin ((11 pi)/(7))

sin ((10 pi)/(7))

sin(-(3pi)/(7))

sin(-(11 pi)/(7))

Which of the following is equivalent to sin3π7 \sin \frac{3 \pi}{7} ?\newlinesin11π7 \sin \frac{11 \pi}{7} \newlinesin10π7 \sin \frac{10 \pi}{7} \newlinesin(3π7) \sin \left(-\frac{3 \pi}{7}\right) \newlinesin(11π7) \sin \left(-\frac{11 \pi}{7}\right)

Full solution

Q. Which of the following is equivalent to sin3π7 \sin \frac{3 \pi}{7} ?\newlinesin11π7 \sin \frac{11 \pi}{7} \newlinesin10π7 \sin \frac{10 \pi}{7} \newlinesin(3π7) \sin \left(-\frac{3 \pi}{7}\right) \newlinesin(11π7) \sin \left(-\frac{11 \pi}{7}\right)
  1. Properties of Sine Function: Understand the properties of the sine function. The sine function has a period of 2π2\pi, which means sin(θ)=sin(θ+2πk)\sin(\theta) = \sin(\theta + 2\pi k) for any integer kk. Also, sine is an odd function, so sin(θ)=sin(θ)\sin(-\theta) = -\sin(\theta).
  2. Analyze First Option: Analyze the first option sin(11π7)\sin\left(\frac{11\pi}{7}\right). We can express 11π7\frac{11\pi}{7} as 3π7+2π(1)\frac{3\pi}{7} + 2\pi(1). Since sin(θ+2π)=sin(θ)\sin(\theta + 2\pi) = \sin(\theta), we have sin(11π7)=sin(3π7)\sin\left(\frac{11\pi}{7}\right) = \sin\left(\frac{3\pi}{7}\right).
  3. Analyze Second Option: Analyze the second option sin(10π7)\sin\left(\frac{10\pi}{7}\right). We can express 10π7\frac{10\pi}{7} as 3π7\frac{3\pi}{7} + 22\pi(11) - \pi. However, sin(θπ)\sin(\theta - \pi) is not equal to sin(θ)\sin(\theta), so sin(10π7)\sin\left(\frac{10\pi}{7}\right) is not equivalent to sin(3π7)\sin\left(\frac{3\pi}{7}\right).
  4. Analyze Third Option: Analyze the third option sin(3π7)\sin\left(-\frac{3\pi}{7}\right). Using the property that sine is an odd function, we have sin(3π7)=sin(3π7)\sin\left(-\frac{3\pi}{7}\right) = -\sin\left(\frac{3\pi}{7}\right). Therefore, this option is not equivalent to sin(3π7)\sin\left(\frac{3\pi}{7}\right) because it gives the negative value.
  5. Analyze Fourth Option: Analyze the fourth option sin(11π7)\sin\left(-\frac{11\pi}{7}\right). Using the property that sine is an odd function, we have sin(11π7)=sin(11π7)\sin\left(-\frac{11\pi}{7}\right) = -\sin\left(\frac{11\pi}{7}\right). From Step 22, we know sin(11π7)=sin(3π7)\sin\left(\frac{11\pi}{7}\right) = \sin\left(\frac{3\pi}{7}\right), so sin(11π7)=sin(3π7)\sin\left(-\frac{11\pi}{7}\right) = -\sin\left(\frac{3\pi}{7}\right), which is not equivalent to sin(3π7)\sin\left(\frac{3\pi}{7}\right).

More problems from Multiplication with rational exponents