Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which lists contain only irrational numbers? Select all that apply.\newlineMulti-select Choices:\newline(A) 11.8,7.3,9.7,3,61.4-11.8, -7.3, -9.7, -3, 61.4\newline(B) 20,50,35,65,70\sqrt{20}, \sqrt{50}, \sqrt{35}, \sqrt{65}, \sqrt{70}\newline(C) 2122,311,19,25,117\frac{21}{22}, \frac{3}{11}, \frac{1}{9}, -\frac{2}{5}, -\frac{1}{17}\newline(D) 25,81,36,144,100\sqrt{25}, \sqrt{81}, \sqrt{36}, \sqrt{144}, \sqrt{100}\newline(E) 22,55,33,66,772\sqrt{2}, 5\sqrt{5}, 3\sqrt{3}, 6\sqrt{6}, 7\sqrt{7}

Full solution

Q. Which lists contain only irrational numbers? Select all that apply.\newlineMulti-select Choices:\newline(A) 11.8,7.3,9.7,3,61.4-11.8, -7.3, -9.7, -3, 61.4\newline(B) 20,50,35,65,70\sqrt{20}, \sqrt{50}, \sqrt{35}, \sqrt{65}, \sqrt{70}\newline(C) 2122,311,19,25,117\frac{21}{22}, \frac{3}{11}, \frac{1}{9}, -\frac{2}{5}, -\frac{1}{17}\newline(D) 25,81,36,144,100\sqrt{25}, \sqrt{81}, \sqrt{36}, \sqrt{144}, \sqrt{100}\newline(E) 22,55,33,66,772\sqrt{2}, 5\sqrt{5}, 3\sqrt{3}, 6\sqrt{6}, 7\sqrt{7}
  1. Identify Number Nature: Identify the nature of numbers in list AA: 11.8-11.8, 7.3-7.3, 9.7-9.7, 3-3, 61.461.4. These are all decimal and whole numbers, which are rational.
  2. Examine Square Roots: Examine list (B): 20\sqrt{20}, 50\sqrt{50}, 35\sqrt{35}, 65\sqrt{65}, 70\sqrt{70}. All numbers are square roots of non-perfect squares, which are irrational.
  3. Check Fractions: Check list (C): 2122\frac{21}{22}, 311\frac{3}{11}, 19\frac{1}{9}, 25\frac{-2}{5}, 117\frac{-1}{17}. These are all fractions, representing rational numbers.
  4. Review Perfect Squares: Review list (D): 25\sqrt{25}, 81\sqrt{81}, 36\sqrt{36}, 144\sqrt{144}, 100\sqrt{100}. These are square roots of perfect squares, which are rational numbers (55, 99, 66, 1212, 1010 respectively).
  5. Analyze Product of Rational: Analyze list EE: 222\sqrt{2}, 555\sqrt{5}, 333\sqrt{3}, 666\sqrt{6}, 777\sqrt{7}. Each term is a product of a rational number and the square root of a non-perfect square, making them all irrational.

More problems from Checkpoint: Rational and irrational numbers