Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which inequality correctly orders the numbers 
-(5)/(4),-2(1)/(2), and -0.1 ?
Choose 1 answer:
(A) 
-0.1 > -2(1)/(2) > -(5)/(4)
(B) 
-2(1)/(2) > -(5)/(4) > -0.1
(c) 
-(5)/(4) > -2(1)/(2) > -0.1
(D) 
-0.1 > -(5)/(4) > -2(1)/(2)

Which inequality correctly orders the numbers 54,212 -\frac{5}{4},-2 \frac{1}{2} , and 0-0.11 ?\newlineChoose 11 answer:\newline(A) -0.1>-2 \frac{1}{2}>-\frac{5}{4} \newline(B) -2 \frac{1}{2}>-\frac{5}{4}>-0.1 \newline(C) -\frac{5}{4}>-2 \frac{1}{2}>-0.1 \newline(D) -0.1>-\frac{5}{4}>-2 \frac{1}{2}

Full solution

Q. Which inequality correctly orders the numbers 54,212 -\frac{5}{4},-2 \frac{1}{2} , and 0-0.11 ?\newlineChoose 11 answer:\newline(A) 0.1>212>54 -0.1>-2 \frac{1}{2}>-\frac{5}{4} \newline(B) 212>54>0.1 -2 \frac{1}{2}>-\frac{5}{4}>-0.1 \newline(C) 54>212>0.1 -\frac{5}{4}>-2 \frac{1}{2}>-0.1 \newline(D) 0.1>54>212 -0.1>-\frac{5}{4}>-2 \frac{1}{2}
  1. Convert to Decimals: First, let's convert all the numbers to decimals to make it easier to compare them.\newline54-\frac{5}{4} is already a fraction, which is equal to 1.25-1.25 when converted to a decimal.\newline2(12)-2\left(\frac{1}{2}\right) is 2.5-2.5 when converted to a decimal because 2(12)2\left(\frac{1}{2}\right) is the same as 2+122 + \frac{1}{2}, which is 2.52.5.\newline0.1-0.1 is already in decimal form.
  2. Compare Decimals: Now, let's compare the decimals. We know that 0.1-0.1 is the smallest negative number because it is closest to zero. Next, we compare 1.25-1.25 and 2.5-2.5. Since 1.25-1.25 is closer to zero, it is greater than 2.5-2.5.
  3. Order Negative Numbers: Therefore, the correct order from greatest to least (keeping in mind these are negative numbers, so "greatest" means closest to zero) is: -0.1 > -1.25 > -2.5
  4. Match to Answer Choices: Now, let's match our ordered numbers to the original forms in the answer choices:\newline0.1-0.1 is the same in the answer choices.\newline1.25-1.25 corresponds to 54-\frac{5}{4}.\newline2.5-2.5 corresponds to 212-2\frac{1}{2}.
  5. Match to Inequality: The inequality that matches our ordered list is:\newline-0.1 > -\frac{5}{4} > -2\frac{1}{2}\newlineThis corresponds to answer choice (D).

More problems from Interval notation