Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which fraction has the same value as 
6^(-2)*24^((1)/(2)) ?
(A) 
(1)/(144)
(B) 
(sqrt2)/(6)
(C) 
(sqrt6)/(18)
(D) 
(1)/(3)

Which fraction has the same value as 622412 6^{-2} \cdot 24^{\frac{1}{2}} ?\newline(A) 1144 \frac{1}{144} \newline(B) 26 \frac{\sqrt{2}}{6} \newline(C) 618 \frac{\sqrt{6}}{18} \newline(D) 13 \frac{1}{3}

Full solution

Q. Which fraction has the same value as 622412 6^{-2} \cdot 24^{\frac{1}{2}} ?\newline(A) 1144 \frac{1}{144} \newline(B) 26 \frac{\sqrt{2}}{6} \newline(C) 618 \frac{\sqrt{6}}{18} \newline(D) 13 \frac{1}{3}
  1. Evaluate Exponent: Evaluate 626^{-2}\newlineThe negative exponent means that we take the reciprocal of the base raised to the positive exponent.\newline62=162=1366^{-2} = \frac{1}{6^2} = \frac{1}{36}
  2. Find Square Root: Evaluate 24(12)24^{\left(\frac{1}{2}\right)}\newlineThe exponent (12)\left(\frac{1}{2}\right) means that we take the square root of the base.\newline24(12)=24=46=46=2624^{\left(\frac{1}{2}\right)} = \sqrt{24} = \sqrt{4\cdot6} = \sqrt{4}\cdot\sqrt{6} = 2\cdot\sqrt{6}
  3. Multiply Results: Multiply the results from Step 11 and Step 22\newlineNow we multiply 136\frac{1}{36} by 262\sqrt{6}.\newline(136)×(26)=2636(\frac{1}{36}) \times (2\sqrt{6}) = \frac{2\sqrt{6}}{36}
  4. Simplify Fraction: Simplify the fraction\newlineWe can simplify the fraction by dividing both the numerator and the denominator by 22.\newline2636=618\frac{2\sqrt{6}}{36} = \frac{\sqrt{6}}{18}
  5. Match Given Options: Match the result with the given options\newlineThe simplified expression from Step 44 is 618\frac{\sqrt{6}}{18}, which matches option (C).

More problems from Multiplication with rational exponents