Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expressions are equivalent to 
(k^((1)/(8)))^(-1) ?
Choose all answers that apply:
A 
(k^(-1))^((1)/(8))
B 
(root(8)(k))^(-1)
C 
k^(-(1)/(8))
D None of the above

Which expressions are equivalent to (k18)1 \left(k^{\frac{1}{8}}\right)^{-1} ?\newlineChoose all answers that apply:\newlineA (k1)18 \left(k^{-1}\right)^{\frac{1}{8}} \newlineB (k8)1 (\sqrt[8]{k})^{-1} \newlineC k18 k^{-\frac{1}{8}} \newlineD None of the above

Full solution

Q. Which expressions are equivalent to (k18)1 \left(k^{\frac{1}{8}}\right)^{-1} ?\newlineChoose all answers that apply:\newlineA (k1)18 \left(k^{-1}\right)^{\frac{1}{8}} \newlineB (k8)1 (\sqrt[8]{k})^{-1} \newlineC k18 k^{-\frac{1}{8}} \newlineD None of the above
  1. Understand properties of exponents: Understand the properties of exponents. When raising a power to another power, you multiply the exponents. So, (k1/8)1(k^{1/8})^{-1} should be simplified by multiplying the exponents (1/8)(1/8) and (1)(-1).
  2. Apply exponent multiplication rule: Apply the exponent multiplication rule.\newline(k18)1=k(18)(1)=k18(k^{\frac{1}{8}})^{-1} = k^{(\frac{1}{8})\cdot(-1)} = k^{-\frac{1}{8}}
  3. Compare with given options: Compare the result with the given options.\newlineOption A: (k1)18(k^{-1})^{\frac{1}{8}} is not equivalent because it suggests taking the reciprocal of kk first and then the 88th root, which is not the same as k18k^{-\frac{1}{8}}.\newlineOption B: (k8)1(\sqrt[8]{k})^{-1} is equivalent because taking the 88th root of kk and then taking the reciprocal is the same as raising kk to the power of 18-\frac{1}{8}.\newlineOption C: k18k^{-\frac{1}{8}} is exactly what we found in Step kk00, so it is equivalent.\newlineOption D: "None of the above" is not correct because we have found equivalent expressions in the options provided.

More problems from Identify equivalent linear expressions I