Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expressions are equivalent to \newline42724^{-2}\cdot7^{-2} ?\newlineChoose 22 answers:\newline(A) (47)4(4\cdot7)^{-4}\newline(B) 1282\frac{1}{28^{2}}\newline(C) 7242\frac{7^{-2}}{4^{2}}\newline(D) (47)4(4\cdot7)^{4}

Full solution

Q. Which expressions are equivalent to \newline42724^{-2}\cdot7^{-2} ?\newlineChoose 22 answers:\newline(A) (47)4(4\cdot7)^{-4}\newline(B) 1282\frac{1}{28^{2}}\newline(C) 7242\frac{7^{-2}}{4^{2}}\newline(D) (47)4(4\cdot7)^{4}
  1. Understand Given Expression: Understand the given expression.\newlineWe are given the expression 42×724^{-2}\times7^{-2} and we need to find which of the provided options are equivalent to this expression.
  2. Simplify Using Exponents: Simplify the given expression using the property of exponents.\newlineWhen we multiply two exponents with the same negative exponent, we can combine the bases and keep the exponent.\newline42×72=(4×7)24^{-2} \times 7^{-2} = (4 \times 7)^{-2}
  3. Check Option A: Check option A: (4×7)4(4\times7)^{-4}\newlineThis option has a different exponent than what we derived in Step 22. Therefore, option A is not equivalent to the given expression.
  4. Check Option B: Check option B: (1)/(282)(1)/(28^{2})\newlineRewrite the simplified expression from Step 22 as a fraction.\newline(47)2=1/(47)2=1/(282)(4*7)^{-2} = 1/(4*7)^{2} = 1/(28^{2})\newlineOption B is equivalent to the given expression.
  5. Check Option C: Check option C: (72)/(42)(7^{-2})/(4^{2})\newlineThis option does not match the simplified expression from Step 22 because the exponents are not the same for both the numerator and the denominator. Therefore, option C is not equivalent to the given expression.
  6. Check Option D: Check option D: (47)4(4*7)^{4}\newlineThis option has a positive exponent and is raised to the power of 44, which is different from the negative exponent of 22 in the simplified expression from Step 22. Therefore, option D is not equivalent to the given expression.

More problems from Multiplication with rational exponents