Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expressions are equivalent to 
(1)/(5)*(1)/(5)*(1)/(5)*(1)/(5)?
Choose 2 answers:
(A) (5^(-2))^(2)
(B) (5^(-4))^(0)
(C) (5^(1))/(5^(4))
(D)  5^(2)*5^(-6)

Which expressions are equivalent to 15151515? \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} ? \newlineChoose 22 answers:\newline(A) (52)2 \left(5^{-2}\right)^{2} \newline(B) (54)0 \left(5^{-4}\right)^{0} \newline(C) 5154 \frac{5^{1}}{5^{4}} \newline(D) 5256 5^{2} \cdot 5^{-6}

Full solution

Q. Which expressions are equivalent to 15151515? \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} ? \newlineChoose 22 answers:\newline(A) (52)2 \left(5^{-2}\right)^{2} \newline(B) (54)0 \left(5^{-4}\right)^{0} \newline(C) 5154 \frac{5^{1}}{5^{4}} \newline(D) 5256 5^{2} \cdot 5^{-6}
  1. Understand Given Expression: Understand the given expression.\newlineThe given expression is 15\frac{1}{5} * 15\frac{1}{5} * 15\frac{1}{5} * 15\frac{1}{5}, which is the multiplication of the fraction 15\frac{1}{5} by itself four times.
  2. Simplify Expression: Simplify the given expression.\newlineWhen you multiply a fraction by itself, you multiply the numerators and the denominators separately. So, (15)×(15)×(15)×(15)=1454=154(\frac{1}{5}) \times (\frac{1}{5}) \times (\frac{1}{5}) \times (\frac{1}{5}) = \frac{1^4}{5^4} = \frac{1}{5^4}.
  3. Compare with Answer Choices: Compare the simplified expression with the answer choices.\newlineWe have simplified the given expression to 1/541 / 5^4. Now we need to find which of the answer choices are equivalent to this expression.\newlineA) (52)2=54(5^{-2})^2 = 5^{-4} because when you raise a power to a power, you multiply the exponents. This is equivalent to 1/541 / 5^4.\newlineB) (54)0=1(5^{-4})^0 = 1 because any number (except 00) raised to the power of 00 is 11. This is not equivalent to 1/541 / 5^4.\newlineC) (51)/(54)=53(5^{1})/(5^{4}) = 5^{-3} because when you divide powers with the same base, you subtract the exponents. This is not equivalent to 1/541 / 5^4.\newlineD) (52)2=54(5^{-2})^2 = 5^{-4}00 because when you multiply powers with the same base, you add the exponents. This is equivalent to 1/541 / 5^4.

More problems from Multiplication with rational exponents