Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 
(6^(-1))^(5)×6^(3) ?
36
1

(1)/(36)

(1)/(6)

Which expression is equivalent to (61)5×63 \left(6^{-1}\right)^{5} \times 6^{3} ?\newline3636\newline11\newline136 \frac{1}{36} \newline16 \frac{1}{6}

Full solution

Q. Which expression is equivalent to (61)5×63 \left(6^{-1}\right)^{5} \times 6^{3} ?\newline3636\newline11\newline136 \frac{1}{36} \newline16 \frac{1}{6}
  1. Apply Power Rule: Apply the power of a power rule to (61)5(6^{-1})^5. According to the power of a power rule, (am)n=amn(a^m)^n = a^{m*n}. So, (61)5=615=65(6^{-1})^5 = 6^{-1*5} = 6^{-5}.
  2. Combine Exponents: Combine the exponents of the same base using the multiplication property of exponents.\newlineWe have 65×636^{-5} \times 6^3.\newlineAccording to the multiplication property of exponents, am×an=am+na^m \times a^n = a^{m+n} when the bases are the same.\newlineSo, 65×63=65+3=626^{-5} \times 6^3 = 6^{-5+3} = 6^{-2}.
  3. Simplify Expression: Simplify the expression 626^{-2}. The negative exponent rule states that an=1ana^{-n} = \frac{1}{a^n}. So, 62=162=1366^{-2} = \frac{1}{6^2} = \frac{1}{36}.

More problems from Multiplication with rational exponents