Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 
(5^(-6))/(5^(-4))×5^(-4) ?

25^(-6)

5^(8)

25^(8)

5^(-6)

Which expression is equivalent to 5654×54 \frac{5^{-6}}{5^{-4}} \times 5^{-4} ?\newline256 25^{-6} \newline58 5^{8} \newline258 25^{8} \newline56 5^{-6}

Full solution

Q. Which expression is equivalent to 5654×54 \frac{5^{-6}}{5^{-4}} \times 5^{-4} ?\newline256 25^{-6} \newline58 5^{8} \newline258 25^{8} \newline56 5^{-6}
  1. Simplify Expression: Simplify the expression (56)/(54)×54(5^{-6})/(5^{-4})\times5^{-4}.\newlineWe will use the property of exponents that states when we divide two powers with the same base, we subtract the exponents. Then we will multiply the result by 545^{-4}.\newline(56)/(54)×54=56(4)×54(5^{-6})/(5^{-4})\times5^{-4} = 5^{-6 - (-4)} \times 5^{-4}\newline=56+4×54= 5^{-6 + 4} \times 5^{-4}\newline=52×54= 5^{-2} \times 5^{-4}
  2. Use Exponent Property: Continue simplifying the expression.\newlineNow we will use the property of exponents that states when we multiply two powers with the same base, we add the exponents.\newline52×54=52+(4)5^{-2} \times 5^{-4} = 5^{-2 + (-4)}\newline=56= 5^{-6}

More problems from Multiplication with rational exponents