Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 
((5^(-1))/(5^(0)))^(-3)?
25
125
0

(1)/(125)

Which expression is equivalent to (5150)3? \left(\frac{5^{-1}}{5^{0}}\right)^{-3} ? \newline2525\newline125125\newline00\newline1125 \frac{1}{125}

Full solution

Q. Which expression is equivalent to (5150)3? \left(\frac{5^{-1}}{5^{0}}\right)^{-3} ? \newline2525\newline125125\newline00\newline1125 \frac{1}{125}
  1. Simplify base: Simplify the base of the expression.\newlineWe have the expression ((51)/(50))3((5^{-1})/(5^{0}))^{-3}. First, we need to simplify the base (51)/(50)(5^{-1})/(5^{0}).\newlineSince any number to the power of 00 is 11, we have 50=15^{0} = 1.\newlineSo, the base simplifies to 51/15^{-1}/1, which is just 515^{-1}.
  2. Apply negative exponent: Apply the negative exponent to the base.\newlineNow we have (51)3(5^{-1})^{-3}. When we raise a power to a power, we multiply the exponents.\newlineSo, (1)×(3)=3(-1) \times (-3) = 3.\newlineTherefore, the expression simplifies to 535^3.
  3. Calculate value: Calculate the value of 535^3. 535^3 means 55 multiplied by itself 33 times. So, 5×5×5=1255 \times 5 \times 5 = 125.

More problems from Multiplication with rational exponents