Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 
(5^(0))/((5^(2))^(5))?
1
0

(1)/(5^(10))

(1)/(5^(7))

Which expression is equivalent to 50(52)5? \frac{5^{0}}{\left(5^{2}\right)^{5}} ? \newline11\newline00\newline1510 \frac{1}{5^{10}} \newline157 \frac{1}{5^{7}}

Full solution

Q. Which expression is equivalent to 50(52)5? \frac{5^{0}}{\left(5^{2}\right)^{5}} ? \newline11\newline00\newline1510 \frac{1}{5^{10}} \newline157 \frac{1}{5^{7}}
  1. Simplify Numerator: Simplify the numerator 505^{0}. Any number raised to the power of 00 is 11. So, 50=15^{0} = 1.
  2. Simplify Denominator: Simplify the denominator (52)5(5^{2})^{5}.\newlineWhen you raise a power to a power, you multiply the exponents.\newlineSo, (52)5=525=510(5^{2})^{5} = 5^{2*5} = 5^{10}.
  3. Write Expression: Write the expression after simplifying the numerator and the denominator.\newlineWe have 11 in the numerator and 5105^{10} in the denominator.\newlineSo, the expression is (1)/(510)(1)/(5^{10}).
  4. Check Match: Check if the expression (1)/(510)(1)/(5^{10}) matches any of the given options.\newlineThe expression (1)/(510)(1)/(5^{10}) is one of the given options.

More problems from Multiplication with rational exponents