Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 
(4^(-2)*4^(6))^(-5)?

4^(-20)

4^(-17)

4^(-16)

4^(60)

Which expression is equivalent to (4246)5? \left(4^{-2} \cdot 4^{6}\right)^{-5} ? \newline420 4^{-20} \newline417 4^{-17} \newline416 4^{-16} \newline460 4^{60}

Full solution

Q. Which expression is equivalent to (4246)5? \left(4^{-2} \cdot 4^{6}\right)^{-5} ? \newline420 4^{-20} \newline417 4^{-17} \newline416 4^{-16} \newline460 4^{60}
  1. Simplify Exponents: Simplify the expression inside the parentheses by adding the exponents of like bases.\newlineAccording to the exponent rules, when multiplying powers with the same base, you add the exponents.\newlineSo, 42×464^{-2} \times 4^{6} becomes 42+64^{-2 + 6}.\newlineCalculation: 2+6=4-2 + 6 = 4\newlineTherefore, the expression simplifies to 444^{4}.
  2. Apply Outer Exponent: Apply the outer exponent to the simplified base and exponent.\newlineNow we have (44)(5)(4^{4})^{(-5)}. According to the exponent rules, when raising a power to a power, you multiply the exponents.\newlineSo, 4(4×5)4^{(4 \times -5)} is the next step.\newlineCalculation: 4×5=204 \times -5 = -20\newlineTherefore, the expression simplifies to 4(20)4^{(-20)}.

More problems from Multiplication with rational exponents