Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 
3^(-6)*(3^(-6))/(3^(-1))?

3^(30)

3^(-10)

3^(-11)

3^(-1)

Which expression is equivalent to 363631? 3^{-6} \cdot \frac{3^{-6}}{3^{-1}} ? \newline330 3^{30} \newline310 3^{-10} \newline311 3^{-11} \newline31 3^{-1}

Full solution

Q. Which expression is equivalent to 363631? 3^{-6} \cdot \frac{3^{-6}}{3^{-1}} ? \newline330 3^{30} \newline310 3^{-10} \newline311 3^{-11} \newline31 3^{-1}
  1. Write and Apply Exponent Rules: Write down the given expression and apply the exponent rules.\newlineThe expression given is 36×36/313^{-6} \times 3^{-6} / 3^{-1}.\newlineWhen multiplying with the same base, we add the exponents. When dividing with the same base, we subtract the exponents.
  2. Add Exponents for Multiplication: Add the exponents for the multiplication part of the expression.\newline36×36=36+6=3123^{-6} \times 3^{-6} = 3^{-6 + -6} = 3^{-12}.
  3. Subtract Exponent for Division: Subtract the exponent for the division part of the expression.\newline(3(12))/(3(1))=3(12(1))=3(12+1)=3(11).(3^{(-12)}) / (3^{(-1)}) = 3^{(-12 - (-1))} = 3^{(-12 + 1)} = 3^{(-11)}.

More problems from Multiplication with rational exponents