Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 
(3^(4))/(3^(5))*3^(8)?

3^(7)

(1)/(3^(7))

3^(9)

(1)/(3^(9))

Which expression is equivalent to 343538? \frac{3^{4}}{3^{5}} \cdot 3^{8} ? \newline37 3^{7} \newline137 \frac{1}{3^{7}} \newline39 3^{9} \newline139 \frac{1}{3^{9}}

Full solution

Q. Which expression is equivalent to 343538? \frac{3^{4}}{3^{5}} \cdot 3^{8} ? \newline37 3^{7} \newline137 \frac{1}{3^{7}} \newline39 3^{9} \newline139 \frac{1}{3^{9}}
  1. Simplify Expression: Simplify the expression using the properties of exponents.\newlineWe have the expression (34)/(35)38(3^{4})/(3^{5})\cdot3^{8}. According to the properties of exponents, when we divide two expressions with the same base, we subtract the exponents. When we multiply two expressions with the same base, we add the exponents.
  2. Division Property: Apply the division property of exponents.\newline(34)/(35)=345=31(3^{4})/(3^{5}) = 3^{4-5} = 3^{-1}
  3. Multiplication Property: Apply the multiplication property of exponents. 31×38=31+8=373^{-1} \times 3^{8} = 3^{-1+8} = 3^{7}
  4. Check Final Expression: Check the final expression against the given options.\newlineThe simplified expression is 373^{7}, which matches one of the given options.

More problems from Multiplication with rational exponents