Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 
(3^(2)×3^(-1))^(2) ?
9

(1)/(9)
81
27

Which expression is equivalent to (32×31)2 \left(3^{2} \times 3^{-1}\right)^{2} ?\newline99\newline19 \frac{1}{9} \newline8181\newline2727

Full solution

Q. Which expression is equivalent to (32×31)2 \left(3^{2} \times 3^{-1}\right)^{2} ?\newline99\newline19 \frac{1}{9} \newline8181\newline2727
  1. Simplify Exponents Using Properties: Simplify the expression inside the parentheses using the properties of exponents.\newlineThe property of exponents we will use is that when we multiply powers with the same base, we add the exponents: am×an=am+na^m \times a^n = a^{m+n}.\newline(32×31)=321=31(3^{2}\times3^{-1}) = 3^{2-1} = 3^{1}
  2. Apply Power to Power Rule: Apply the power to a power rule to the simplified expression.\newlineThe power to a power rule states that (am)n=amn(a^m)^n = a^{m*n}.\newline(31)2=312=32(3^{1})^{2} = 3^{1*2} = 3^{2}
  3. Calculate Final Value: Calculate the final value of the expression. 32=3×3=93^{2} = 3 \times 3 = 9

More problems from Simplify radical expressions with root inside the root