Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 
3(1)/(2)+(-1(2)/(5)) ?

-1(2)/(5)-3(1)/(2)

3(1)/(2)-(-1(2)/(5))

-1(2)/(5)+(-3(1)/(2))

3(1)/(2)-1(2)/(5)

Which expression is equivalent to 312+(125) 3 \frac{1}{2}+\left(-1 \frac{2}{5}\right) ?\newline125312 -1 \frac{2}{5}-3 \frac{1}{2} \newline312(125) 3 \frac{1}{2}-\left(-1 \frac{2}{5}\right) \newline125+(312) -1 \frac{2}{5}+\left(-3 \frac{1}{2}\right) \newline312125 3 \frac{1}{2}-1 \frac{2}{5}

Full solution

Q. Which expression is equivalent to 312+(125) 3 \frac{1}{2}+\left(-1 \frac{2}{5}\right) ?\newline125312 -1 \frac{2}{5}-3 \frac{1}{2} \newline312(125) 3 \frac{1}{2}-\left(-1 \frac{2}{5}\right) \newline125+(312) -1 \frac{2}{5}+\left(-3 \frac{1}{2}\right) \newline312125 3 \frac{1}{2}-1 \frac{2}{5}
  1. Understand the problem: Understand the problem.\newlineWe need to find the expression equivalent to the given expression 3(12)+(1(25))3\left(\frac{1}{2}\right) + \left(-1\left(\frac{2}{5}\right)\right).
  2. Convert to improper fractions: Convert mixed numbers to improper fractions.\newline3123\frac{1}{2} can be converted to an improper fraction by multiplying the whole number by the denominator and adding the numerator, then placing the result over the original denominator.\newline312=(3×2+1)2=(6+1)2=723\frac{1}{2} = \frac{(3\times2 + 1)}{2} = \frac{(6 + 1)}{2} = \frac{7}{2}\newlineSimilarly, for 125-1\frac{2}{5}, we do the same process considering the negative sign.\newline125=(1×5+2)5=(5+2)5=35-1\frac{2}{5} = \frac{(-1\times5 + 2)}{5} = \frac{(-5 + 2)}{5} = \frac{-3}{5}
  3. Add fractions with common denominator: Add the two improper fractions.\newlineTo add fractions, we need a common denominator. The common denominator for 22 and 55 is 1010.\newlineWe convert each fraction to have a denominator of 1010.\newline(72)(\frac{7}{2}) becomes (7×52×5)=3510(\frac{7\times5}{2\times5}) = \frac{35}{10}\newline(35)(\frac{-3}{5}) becomes (3×25×2)=610(\frac{-3\times2}{5\times2}) = \frac{-6}{10}\newlineNow we can add the fractions:\newline3510+(610)=35610=2910\frac{35}{10} + (\frac{-6}{10}) = \frac{35 - 6}{10} = \frac{29}{10}
  4. Convert back to mixed number: Convert the result back to a mixed number.\newlineTo convert an improper fraction to a mixed number, we divide the numerator by the denominator.\newline2910=2\frac{29}{10} = 2 remainder 99, so the mixed number is 2(910)2\left(\frac{9}{10}\right).
  5. Compare with given options: Compare the result with the given options.\newlineThe equivalent expression to 3(12)+(1(25))3\left(\frac{1}{2}\right) + \left(-1\left(\frac{2}{5}\right)\right) is 2(910)2\left(\frac{9}{10}\right), which is not explicitly listed in the options. However, we can see that the option "3(12)1(25)3\left(\frac{1}{2}\right) - 1\left(\frac{2}{5}\right)" is the same as adding the negative of 1(25)-1\left(\frac{2}{5}\right) to 3(12)3\left(\frac{1}{2}\right), which is what we did. Therefore, the equivalent expression is "3(12)1(25)3\left(\frac{1}{2}\right) - 1\left(\frac{2}{5}\right)".

More problems from Multiplication with rational exponents