Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 
-2(2)/(5)+(-5(1)/(2)) ?

-5(1)/(2)+2(2)/(5)

2(2)/(5)+(-5(1)/(2))

-2(2)/(5)-5(1)/(2)

-5(1)/(2)-(-2(2)/(5))

Which expression is equivalent to 225+(512) -2 \frac{2}{5}+\left(-5 \frac{1}{2}\right) ?\newline512+225 -5 \frac{1}{2}+2 \frac{2}{5} \newline225+(512) 2 \frac{2}{5}+\left(-5 \frac{1}{2}\right) \newline225512 -2 \frac{2}{5}-5 \frac{1}{2} \newline512(225) -5 \frac{1}{2}-\left(-2 \frac{2}{5}\right)

Full solution

Q. Which expression is equivalent to 225+(512) -2 \frac{2}{5}+\left(-5 \frac{1}{2}\right) ?\newline512+225 -5 \frac{1}{2}+2 \frac{2}{5} \newline225+(512) 2 \frac{2}{5}+\left(-5 \frac{1}{2}\right) \newline225512 -2 \frac{2}{5}-5 \frac{1}{2} \newline512(225) -5 \frac{1}{2}-\left(-2 \frac{2}{5}\right)
  1. Understand the problem: Understand the problem. We need to find the expression equivalent to the given expression 2(25)+(5(12))-2\left(\frac{2}{5}\right)+\left(-5\left(\frac{1}{2}\right)\right). This involves adding two fractions with different denominators.
  2. Identify the denominators: Identify the denominators of the fractions.\newlineThe denominators of the given fractions are 55 and 22. To add these fractions, we need a common denominator.
  3. Find the LCD: Find the least common denominator (LCD). The LCD of 55 and 22 is 1010 because it is the smallest number that both 55 and 22 can divide into without leaving a remainder.
  4. Convert to equivalent fractions: Convert each fraction to an equivalent fraction with the LCD as the denominator.\newline2(25)-2\left(\frac{2}{5}\right) becomes 2(2)(252)=4(410)-2\left(2\right)\cdot\left(\frac{2}{5\cdot2}\right) = -4\left(\frac{4}{10}\right)\newline(5(12))(-5\left(\frac{1}{2}\right)) becomes (5(1))(525)=5(510)(-5\left(1\right))\cdot\left(\frac{5}{2\cdot5}\right) = -5\left(\frac{5}{10}\right)
  5. Add equivalent fractions: Add the equivalent fractions.\newline4(410)+(5(510))=4(4)5(5)10-4\left(\frac{4}{10}\right) + \left(-5\left(\frac{5}{10}\right)\right) = \frac{-4(4) - 5(5)}{10}
  6. Perform addition in numerator: Perform the addition in the numerator.\newline4(4)5(5)=825=33-4(4) - 5(5) = -8 - 25 = -33
  7. Write final expression: Write the final expression.\newlineThe final expression is 3310-\frac{33}{10}, which is equivalent to 3(310)-3\left(\frac{3}{10}\right) or 3.3-3.3.
  8. Match with given options: Match the final expression with the given options.\newlineThe final expression 3310-\frac{33}{10} or 3(310)-3\left(\frac{3}{10}\right) is not explicitly listed in the options. However, we can see that the option 2(25)5(12)\text{“}-2\left(\frac{2}{5}\right)-5\left(\frac{1}{2}\right)\text{”} is the original expression with a different sign between the terms. Since we have not changed the signs of the terms, this option cannot be equivalent to the original expression. The correct equivalent expression must have the same terms with the same signs, so the equivalent expression is 2(25)+(5(12))\text{“}-2\left(\frac{2}{5}\right)+(-5\left(\frac{1}{2}\right))\text{”}.

More problems from Multiplication with rational exponents