Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression has the same value as 
6x+6y ?

-6x+6y

6y+(-6x)

-6y-6x

6x-(-6y)

Which expression has the same value as 6x+6y 6 x+6 y ?\newline6x+6y -6 x+6 y \newline6y+(6x) 6 y+(-6 x) \newline6y6x -6 y-6 x \newline6x(6y) 6 x-(-6 y)

Full solution

Q. Which expression has the same value as 6x+6y 6 x+6 y ?\newline6x+6y -6 x+6 y \newline6y+(6x) 6 y+(-6 x) \newline6y6x -6 y-6 x \newline6x(6y) 6 x-(-6 y)
  1. Identify Given Expression: Identify the given expression and the options to compare.\newlineGiven expression: 6x+6y6x + 6y\newlineOptions to compare: \newlineA) 6x+6y-6x + 6y\newlineB) 6y+(6x)6y + (-6x)\newlineC) 6y6x-6y - 6x\newlineD) 6x(6y)6x - (-6y)
  2. Compare Option A: Compare option A with the given expression.\newlineGiven expression: 6x+6y6x + 6y\newlineOption A: 6x+6y-6x + 6y\newlineThe term 6x-6x in option A is the additive inverse of 6x6x in the given expression, so option A does not have the same value as the given expression.
  3. Compare Option B: Compare option B with the given expression.\newlineGiven expression: 6x+6y6x + 6y\newlineOption B: 6y+(6x)6y + (-6x)\newlineThe term (6x)(-6x) in option B is the additive inverse of 6x6x in the given expression, so option B does not have the same value as the given expression.
  4. Compare Option C: Compare option C with the given expression.\newlineGiven expression: 6x+6y6x + 6y\newlineOption C: 6y6x-6y - 6x\newlineBoth terms in option C are the additive inverses of the corresponding terms in the given expression, so option C does not have the same value as the given expression.
  5. Compare Option D: Compare option D with the given expression.\newlineGiven expression: 6x+6y6x + 6y\newlineOption D: 6x(6y)6x - (-6y)\newlineThe term (6y)-(-6y) in option D is the same as 6y6y because the double negative cancels out. Therefore, option D simplifies to 6x+6y6x + 6y, which is the same as the given expression.

More problems from Simplify variable expressions involving like terms and the distributive property