Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which equation shows the zero property of multiplication?\newlineChoices:\newline(A) j(k+m)=jk+jmj \cdot (k + m) = j \cdot k + j \cdot m\newline(B) kj=jkk \cdot j = j \cdot k\newline(C) (jk)m=j(km)(j \cdot k) \cdot m = j \cdot (k \cdot m)\newline(D) 0=0j0 = 0 \cdot j

Full solution

Q. Which equation shows the zero property of multiplication?\newlineChoices:\newline(A) j(k+m)=jk+jmj \cdot (k + m) = j \cdot k + j \cdot m\newline(B) kj=jkk \cdot j = j \cdot k\newline(C) (jk)m=j(km)(j \cdot k) \cdot m = j \cdot (k \cdot m)\newline(D) 0=0j0 = 0 \cdot j
  1. Zero Property Explanation: Understand the zero property of multiplication. The zero property of multiplication states that any number multiplied by zero is zero. The mathematical representation of this property is a×0=0a \times 0 = 0 or 0×a=00 \times a = 0, where 'aa' can be any real number.
  2. Analyze Choices: Analyze each choice to see which one represents the zero property of multiplication. (A) j(k+m)=jk+jmj \cdot (k + m) = j \cdot k + j \cdot m - This is the distributive property, not the zero property.
  3. Distributive Property: Continue analyzing the choices.\newline(B) kj=jkk \cdot j = j \cdot k - This is the commutative property of multiplication, not the zero property.
  4. Commutative Property: Continue analyzing the choices.\newline(C) j \cdot k) \cdot m = j \cdot (k \cdot m)\ - This is the associative property of multiplication, not the zero property.
  5. Associative Property: Continue analyzing the choices.\(\newline(D) 0=0j0 = 0 \cdot j - This choice shows that zero multiplied by any number 'jj' is zero, which is a direct representation of the zero property of multiplication.

More problems from Properties of multiplication