Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which equation shows the commutative property of multiplication?\newlineChoices:\newline(A) 0=0g0 = 0 \cdot g\newline(B) j+k=ghj + k = g \cdot h\newline(C) hg=ghh \cdot g = g \cdot h\newline(D) ghgj=g(hj)g \cdot h - g \cdot j = g \cdot (h - j)

Full solution

Q. Which equation shows the commutative property of multiplication?\newlineChoices:\newline(A) 0=0g0 = 0 \cdot g\newline(B) j+k=ghj + k = g \cdot h\newline(C) hg=ghh \cdot g = g \cdot h\newline(D) ghgj=g(hj)g \cdot h - g \cdot j = g \cdot (h - j)
  1. Identify Property: Identify the property of multiplication that involves rearranging the factors without changing the product.
  2. Review Choices: Review each choice to see which one demonstrates the commutative property, which states that a×b=b×aa \times b = b \times a.
  3. Check (A): Check choice (A): 0=0g0 = 0 \cdot g. This is an identity property example, not commutative.
  4. Check (B): Check choice (B): j+k=ghj + k = g \cdot h. This involves addition and multiplication, not purely demonstrating commutative property.
  5. Check (C): Check choice (C): hg=ghh \cdot g = g \cdot h. This matches the definition of the commutative property, where the order of multiplication does not affect the outcome.
  6. Check (D): Check choice (D): ghgj=g(hj)g \cdot h - g \cdot j = g \cdot (h - j). This is an example of the distributive property, not commutative.

More problems from Properties of addition and multiplication