Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which decimal is equivalent to 
(1)/(3) ?
Choose 1 answer:
(A) 
0. bar(13)
(B) 
0. bar(3)
(c) 
1. bar(3)
(D) 
3. bar(3)

Which decimal is equivalent to 13 \frac{1}{3} ?\newlineChoose 11 answer:\newline(A) 0.13 0 . \overline{13} \newline(B) 0.3 0 . \overline{3} \newline(C) 1.3 1 . \overline{3} \newline(D) 3.3 3 . \overline{3}

Full solution

Q. Which decimal is equivalent to 13 \frac{1}{3} ?\newlineChoose 11 answer:\newline(A) 0.13 0 . \overline{13} \newline(B) 0.3 0 . \overline{3} \newline(C) 1.3 1 . \overline{3} \newline(D) 3.3 3 . \overline{3}
  1. Understand repeating decimals: Understand the concept of repeating decimals. A repeating decimal is a decimal number that has a digit or a group of digits that repeat infinitely. The bar notation (like 3\overline{3}) indicates that the digit under the bar repeats without end.
  2. Convert fraction to decimal: Convert the fraction (1)/(3)(1)/(3) to a decimal.\newlineTo convert a fraction to a decimal, we divide the numerator by the denominator. So we divide 11 by 33.
  3. Perform division: Perform the division 1÷31 \div 3.\newlineWhen we divide 11 by 33, we get 0.33330.3333\ldots, with the 33 repeating infinitely.
  4. Express using bar notation: Express the repeating decimal using bar notation.\newlineSince the digit 33 repeats infinitely, we use the bar notation over the 33 to indicate this repetition. Therefore, 13\frac{1}{3} is equivalent to 0.30.\overline{3}.

More problems from Identify equivalent linear expressions