Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What kind of transformation converts the graph of f(x)=6(x+10)2+2f(x) = -6(x + 10)^2 + 2 into the graph of g(x)=6(x+4)2+2g(x) = -6(x + 4)^2 + 2?\newlineChoices:\newline(A) translation 66 units down\newline(B) translation 66 units up\newline(C) translation 66 units right\newline(D) translation 66 units left

Full solution

Q. What kind of transformation converts the graph of f(x)=6(x+10)2+2f(x) = -6(x + 10)^2 + 2 into the graph of g(x)=6(x+4)2+2g(x) = -6(x + 4)^2 + 2?\newlineChoices:\newline(A) translation 66 units down\newline(B) translation 66 units up\newline(C) translation 66 units right\newline(D) translation 66 units left
  1. Find Vertex: f(x)=6(x+10)2+2f(x) = -6(x + 10)^2 + 2\newlineFind the vertex of the given function.\newlineCompare f(x)=6(x+10)2+2f(x) = -6(x + 10)^2 + 2 with the vertex form.\newlineVertex of f(x)f(x): (10,2)(-10, 2)
  2. Compare Functions: g(x)=6(x+4)2+2g(x) = -6(x + 4)^2 + 2\newlineFind the vertex of the transformed function.\newlineCompare g(x)=6(x+4)2+2g(x) = -6(x + 4)^2 + 2 with the vertex form.\newlineVertex of g(x)g(x): (4,2)(-4, 2)
  3. Find Transformed Vertex: We found:\newlineVertex of f(x)=(10,2)f(x) = (-10, 2)\newlineVertex of g(x)=(4,2)g(x) = (-4, 2)\newlineIs the transformation horizontal or vertical?\newlineSince the yy-values of the vertices are the same and the xx-values change, the transformation is horizontal.
  4. Identify Transformation: We have:\newlineVertex of f(x)=(10,2)f(x) = (-10, 2)\newlineVertex of g(x)=(4,2)g(x) = (-4, 2)\newlineDid f(x)f(x) shift to the left or right to become g(x)g(x)?\newlineThe xx-coordinates of the vertices are 10-10 and 4-4 respectively.\newlineOn a number line, 4-4 lies to the right of 10-10.\newlinef(x)f(x) shifts towards the right.
  5. Shift Direction: We found that f(x)f(x) shifts towards the right.\newlineIdentify the transformation from (10,2)(-10, 2) to (4,2)(-4, 2).\newline10(4)|-10 - (-4)|\newline=10+4=|-10 + 4|\newline=6=|-6|\newline=6=6\newlineThe graph of f(x)f(x) shifts 66 units to the right.

More problems from Describe function transformations