Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What kind of transformation converts the graph of f(x)=7(x10)2+1f(x) = -7(x - 10)^2 + 1 into the graph of g(x)=7(x10)28g(x) = -7(x - 10)^2 - 8?\newlineChoices:\newline(A) translation 99 units left\newline(B) translation 99 units down\newline(C) translation 99 units right\newline(D) translation 99 units up

Full solution

Q. What kind of transformation converts the graph of f(x)=7(x10)2+1f(x) = -7(x - 10)^2 + 1 into the graph of g(x)=7(x10)28g(x) = -7(x - 10)^2 - 8?\newlineChoices:\newline(A) translation 99 units left\newline(B) translation 99 units down\newline(C) translation 99 units right\newline(D) translation 99 units up
  1. Find Vertex: f(x)=7(x10)2+1f(x) = -7(x - 10)^2 + 1\newlineFind the vertex of the given function.\newlineCompare f(x)=7(x10)2+1f(x) = -7(x - 10)^2 + 1 with the vertex form.\newlineVertex of f(x)f(x): (10,1)(10, 1)
  2. Compare with Vertex Form: g(x)=7(x10)28g(x) = -7(x - 10)^2 - 8\newlineFind the vertex of the transformed function.\newlineCompare g(x)=7(x10)28g(x) = -7(x - 10)^2 - 8 with the vertex form.\newlineVertex of g(x)g(x): (10,8)(10, -8)
  3. Vertical Transformation: We found:\newlineVertex of f(x)=(10,1)f(x) = (10, 1)\newlineVertex of g(x)=(10,8)g(x) = (10, -8)\newlineIs the transformation horizontal or vertical?\newlineSince the xx-values are the same and the yy-values changed, the transformation is vertical.
  4. Shift Direction: We have:\newlineVertex of f(x)=(10,1)f(x) = (10, 1)\newlineVertex of g(x)=(10,8)g(x) = (10, -8)\newlineDid f(x)f(x) shift up or down to become g(x)g(x)?\newlineThe yy-coordinates of the vertices are 11 and 8-8 respectively.\newlineOn a number line, 8-8 lies below 11.\newlinef(x)f(x) shifts downwards.
  5. Identify Shift Amount: We found that f(x)f(x) shifts downwards.\newlineIdentify the transformation from (10,1)(10, 1) to (10,8)(10, -8).\newline1(8)|1 - (-8)|\newline=1+8=|1 + 8|\newline=9=|9|\newline=9=9\newlineThe graph of f(x)f(x) shifts 99 units down.

More problems from Describe function transformations