Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What kind of transformation converts the graph of f(x)=7(x8)2+5f(x) = 7(x - 8)^2 + 5 into the graph of g(x)=7(x+1)2+5g(x) = 7(x + 1)^2 + 5?\newlineChoices:\newline(A) translation 99 units up\newline(B) translation 99 units right\newline(C) translation 99 units left\newline(D) translation 99 units down

Full solution

Q. What kind of transformation converts the graph of f(x)=7(x8)2+5f(x) = 7(x - 8)^2 + 5 into the graph of g(x)=7(x+1)2+5g(x) = 7(x + 1)^2 + 5?\newlineChoices:\newline(A) translation 99 units up\newline(B) translation 99 units right\newline(C) translation 99 units left\newline(D) translation 99 units down
  1. Find Vertex Function: f(x)=7(x8)2+5f(x) = 7(x - 8)^2 + 5\newlineFind the vertex of the given function.\newlineCompare f(x)=7(x8)2+5f(x) = 7(x - 8)^2 + 5 with the vertex form.\newlineVertex of f(x)f(x): (8,5)(8, 5)
  2. Compare with Vertex Form: g(x)=7(x+1)2+5g(x) = 7(x + 1)^2 + 5\newlineFind the vertex of the transformed function.\newlineCompare g(x)=7(x+1)2+5g(x) = 7(x + 1)^2 + 5 with the vertex form.\newlineVertex of g(x)g(x): (1,5)(-1, 5)
  3. Find Transformed Vertex: We found:\newlineVertex of f(x)=(8,5)f(x) = (8, 5)\newlineVertex of g(x)=(1,5)g(x) = (-1, 5)\newlineIs the transformation horizontal or vertical?\newlineSince the yy-values of the vertices are the same and only the xx-values change, the transformation is horizontal.
  4. Compare with Vertex Form: We have:\newlineVertex of f(x)=(8,5)f(x) = (8, 5)\newlineVertex of g(x)=(1,5)g(x) = (-1, 5)\newlineDid f(x)f(x) shift to the left or right to become g(x)g(x)?\newlineThe xx-coordinates of the vertices are 88 and 1-1 respectively.\newlineOn a number line, 1-1 lies to the left of 88.\newlinef(x)f(x) shifts towards the left.
  5. Identify Transformation: We found that f(x)f(x) shifts towards the left.\newlineIdentify the transformation from (8,5)(8, 5) to (1,5)(-1, 5).\newlineCalculate the distance between the xx-coordinates of the vertices.\newline8(1)=9=9|8 - (-1)| = |9| = 9\newlineThe graph of f(x)f(x) shifts 99 units to the left.

More problems from Describe function transformations