Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What kind of transformation converts the graph of f(x)=5(x1)2+1f(x) = 5(x - 1)^2 + 1 into the graph of g(x)=5(x1)22g(x) = 5(x - 1)^2 - 2?\newlineChoices:\newline(A) translation 33 units down\newline(B) translation 33 units right\newline(C) translation 33 units left\newline(D) translation 33 units up

Full solution

Q. What kind of transformation converts the graph of f(x)=5(x1)2+1f(x) = 5(x - 1)^2 + 1 into the graph of g(x)=5(x1)22g(x) = 5(x - 1)^2 - 2?\newlineChoices:\newline(A) translation 33 units down\newline(B) translation 33 units right\newline(C) translation 33 units left\newline(D) translation 33 units up
  1. Find Vertex Function: f(x)=5(x1)2+1f(x) = 5(x - 1)^2 + 1\newlineFind the vertex of the given function.\newlineCompare f(x)=5(x1)2+1f(x) = 5(x - 1)^2 + 1 with the vertex form y=a(xh)2+ky = a(x - h)^2 + k.\newlineVertex of f(x)f(x): (1,1)(1, 1)
  2. Compare with Vertex Form: g(x)=5(x1)22g(x) = 5(x - 1)^2 - 2\newlineFind the vertex of the transformed function.\newlineCompare g(x)=5(x1)22g(x) = 5(x - 1)^2 - 2 with the vertex form y=a(xh)2+ky = a(x - h)^2 + k.\newlineVertex of g(x)g(x): (1,2)(1, -2)
  3. Find Transformed Function Vertex: We found:\newlineVertex of f(x)=(1,1)f(x) = (1, 1)\newlineVertex of g(x)=(1,2)g(x) = (1, -2)\newlineIs the transformation horizontal or vertical?\newlineSince the xx-values of the vertices are the same and the yy-values have changed, the transformation is vertical.
  4. Identify Vertical Transformation: We have:\newlineVertex of f(x)=(1,1)f(x) = (1, 1)\newlineVertex of g(x)=(1,2)g(x) = (1, -2)\newlineDid f(x)f(x) shift up or down to become g(x)g(x)?\newlineThe yy-coordinates of the vertices are 11 and 2-2 respectively.\newlineOn a number line, 2-2 lies below 11.\newlinef(x)f(x) shifts downwards.
  5. Identify Direction of Shift: We found that f(x)f(x) shifts downwards.\newlineIdentify the transformation from (1,1)(1, 1) to (1,2)(1, -2).\newline1(2)|1 - (-2)|\newline=3=|3|\newline=3=3\newlineThe graph of f(x)f(x) shifts 33 units down.

More problems from Describe function transformations