Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What kind of transformation converts the graph of f(x)=9x+3+1f(x) = -9|x + 3| + 1 into the graph of g(x)=9x5+1g(x) = -9|x - 5| + 1?\newlineChoices:\newline(A) translation 88 units down\newline(B) translation 88 units up\newline(C) translation 88 units right\newline(D) translation 88 units left

Full solution

Q. What kind of transformation converts the graph of f(x)=9x+3+1f(x) = -9|x + 3| + 1 into the graph of g(x)=9x5+1g(x) = -9|x - 5| + 1?\newlineChoices:\newline(A) translation 88 units down\newline(B) translation 88 units up\newline(C) translation 88 units right\newline(D) translation 88 units left
  1. Identify Vertex: Identify the vertex of the given function f(x)f(x). The vertex of the absolute value function f(x)=9x+3+1f(x) = -9|x + 3| + 1 is at the point where the expression inside the absolute value is zero. Set x+3=0x + 3 = 0 to find the xx-coordinate of the vertex. x=3x = -3 The yy-coordinate is the value of f(x)f(x) when x=3x = -3. f(3)=90+1=1f(-3) = -9|0| + 1 = 1 Vertex of f(x)f(x): f(x)=9x+3+1f(x) = -9|x + 3| + 100
  2. Find X-coordinate: Identify the vertex of the transformed function g(x)g(x). The vertex of the absolute value function g(x)=9x5+1g(x) = -9|x - 5| + 1 is at the point where the expression inside the absolute value is zero. Set x5=0x - 5 = 0 to find the x-coordinate of the vertex. x=5x = 5 The y-coordinate is the value of g(x)g(x) when x=5x = 5. g(5)=90+1=1g(5) = -9|0| + 1 = 1 Vertex of g(x)g(x): (5,1)(5, 1)
  3. Determine Transformation Type: Determine the type of transformation.\newlineThe vertices of f(x)f(x) and g(x)g(x) are (3,1)(-3, 1) and (5,1)(5, 1), respectively. Since the yy-coordinates of the vertices are the same, there is no vertical transformation. The xx-coordinates have changed, indicating a horizontal transformation.
  4. Determine Horizontal Shift: Determine the direction and magnitude of the horizontal transformation.\newlineTo find the horizontal shift, calculate the difference between the x-coordinates of the vertices of f(x)f(x) and g(x)g(x).\newlineShift = x-coordinate of g(x)g(x) - x-coordinate of f(x)f(x)\newlineShift = 5(3)5 - (-3)\newlineShift = 5+35 + 3\newlineShift = 88\newlineSince the x-coordinate of the vertex of g(x)g(x) is greater than the x-coordinate of the vertex of f(x)f(x), the graph has shifted to the right.

More problems from Describe function transformations