Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
What kind of sequence is this?
\newline
208
,
192
,
179
,
169
,
…
208, 192, 179, 169, \dots
208
,
192
,
179
,
169
,
…
\newline
Choices:
\newline
(A) arithmetic
\newline
(B) geometric
\newline
(C) both
\newline
(D) neither
View step-by-step help
Home
Math Problems
Algebra 2
Classify formulas and sequences
Full solution
Q.
What kind of sequence is this?
\newline
208
,
192
,
179
,
169
,
…
208, 192, 179, 169, \dots
208
,
192
,
179
,
169
,
…
\newline
Choices:
\newline
(A) arithmetic
\newline
(B) geometric
\newline
(C) both
\newline
(D) neither
Check Differences:
Check if the differences between consecutive terms are constant. Calculate the differences:
192
−
208
=
−
16
192 - 208 = -16
192
−
208
=
−
16
,
179
−
192
=
−
13
179 - 192 = -13
179
−
192
=
−
13
,
169
−
179
=
−
10
169 - 179 = -10
169
−
179
=
−
10
.
Not Arithmetic:
Since the differences are not constant (
−
16
-16
−
16
,
−
13
-13
−
13
,
−
10
-10
−
10
), it's not an arithmetic sequence.
Check Ratios:
Check if the ratios between consecutive terms are constant. Calculate the ratios:
192
208
≈
0.9231
\frac{192}{208} \approx 0.9231
208
192
≈
0.9231
,
179
192
≈
0.9323
\frac{179}{192} \approx 0.9323
192
179
≈
0.9323
,
169
179
≈
0.9441
\frac{169}{179} \approx 0.9441
179
169
≈
0.9441
.
Not Geometric:
Since the ratios are not constant
0.9231
,
0.9323
,
0.9441
0.9231, 0.9323, 0.9441
0.9231
,
0.9323
,
0.9441
, it's not a geometric sequence.
More problems from Classify formulas and sequences
Question
Find the sum of the finite arithmetic series.
∑
n
=
1
10
(
7
n
+
4
)
\sum_{n=1}^{10} (7n+4)
∑
n
=
1
10
(
7
n
+
4
)
\newline
______
Get tutor help
Posted 1 year ago
Question
Type the missing number in this sequence: `55,\59,\63,\text{_____},\71,\75,\79`
Get tutor help
Posted 10 months ago
Question
Type the missing number in this sequence: `2, 4 8`, ______,`32`
Get tutor help
Posted 10 months ago
Question
What kind of sequence is this?
2
,
10
,
50
,
250
,
…
2, 10, 50, 250, \ldots
2
,
10
,
50
,
250
,
…
Choices:Choices:
\newline
[A]arithmetic
\text{[A]arithmetic}
[A]arithmetic
\newline
[B]geometric
\text{[B]geometric}
[B]geometric
\newline
[C]both
\text{[C]both}
[C]both
\newline
[D]neither
\text{[D]neither}
[D]neither
Get tutor help
Posted 10 months ago
Question
What is the missing number in this pattern?
1
,
4
,
9
,
16
,
25
,
36
,
49
,
64
,
81
,
_
_
_
_
1, 4, 9, 16, 25, 36, 49, 64, 81, \_\_\_\_
1
,
4
,
9
,
16
,
25
,
36
,
49
,
64
,
81
,
____
Get tutor help
Posted 1 year ago
Question
Classify the series.
∑
n
=
0
12
(
n
+
2
)
3
\sum_{n = 0}^{12} (n + 2)^3
∑
n
=
0
12
(
n
+
2
)
3
\newline
Choices:
\newline
[A]arithmetic
\text{[A]arithmetic}
[A]arithmetic
\newline
[B]geometric
\text{[B]geometric}
[B]geometric
\newline
[C]both
\text{[C]both}
[C]both
\newline
[D]neither
\text{[D]neither}
[D]neither
Get tutor help
Posted 10 months ago
Question
Find the first three partial sums of the series.
\newline
1
+
6
+
11
+
16
+
21
+
26
+
⋯
1 + 6 + 11 + 16 + 21 + 26 + \cdots
1
+
6
+
11
+
16
+
21
+
26
+
⋯
\newline
Write your answers as integers or fractions in simplest form.
\newline
S
1
=
S_1 =
S
1
=
____
\newline
S
2
=
S_2 =
S
2
=
____
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Find the third partial sum of the series.
\newline
3
+
9
+
15
+
21
+
27
+
33
+
⋯
3 + 9 + 15 + 21 + 27 + 33 + \cdots
3
+
9
+
15
+
21
+
27
+
33
+
⋯
\newline
Write your answer as an integer or a fraction in simplest form.
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Find the first three partial sums of the series.
\newline
1
+
7
+
13
+
19
+
25
+
31
+
⋯
1 + 7 + 13 + 19 + 25 + 31 + \cdots
1
+
7
+
13
+
19
+
25
+
31
+
⋯
\newline
Write your answers as integers or fractions in simplest form.
\newline
S
1
=
S_1 =
S
1
=
____
\newline
S
2
=
S_2 =
S
2
=
____
\newline
S
3
=
S_3 =
S
3
=
____
Get tutor help
Posted 1 year ago
Question
Does the infinite geometric series converge or diverge?
\newline
1
+
3
4
+
9
16
+
27
64
+
⋯
1 + \frac{3}{4} + \frac{9}{16} + \frac{27}{64} + \cdots
1
+
4
3
+
16
9
+
64
27
+
⋯
\newline
Choices:
\newline
[A]converge
\text{[A]converge}
[A]converge
\newline
[B]diverge
\text{[B]diverge}
[B]diverge
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant