Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of this expression?\newline(1.25×104)+(7.5×105)0.08(1.25 \times 10^{-4}) + \frac{(7.5 \times 10^{-5})}{0.08}\newlineChoices:\newline(A) 2.5×1032.5 \times 10^3\newline(B) 2.5×1042.5 \times 10^4\newline(C) 2.5×1042.5 \times 10^{-4}\newline(D) 2.5×1032.5 \times 10^{-3}

Full solution

Q. What is the value of this expression?\newline(1.25×104)+(7.5×105)0.08(1.25 \times 10^{-4}) + \frac{(7.5 \times 10^{-5})}{0.08}\newlineChoices:\newline(A) 2.5×1032.5 \times 10^3\newline(B) 2.5×1042.5 \times 10^4\newline(C) 2.5×1042.5 \times 10^{-4}\newline(D) 2.5×1032.5 \times 10^{-3}
  1. Divide and Simplify: Now, let's divide 7.5×1057.5 \times 10^{-5} by 8×1028 \times 10^{-2}. \newline7.5×1058×102=7.58×105102=0.9375×103.\frac{7.5 \times 10^{-5}}{8 \times 10^{-2}} = \frac{7.5}{8} \times \frac{10^{-5}}{10^{-2}} = 0.9375 \times 10^{-3}.
  2. Addition of Terms: Next, we add the two terms together. \newline(1.25×104)+(0.9375×103)(1.25 \times 10^{-4}) + (0.9375 \times 10^{-3}).\newlineSince the exponents are different, we need to make them the same before adding.
  3. Convert to Same Exponent: Let's convert 1.25×1041.25 \times 10^{-4} to 10310^{-3} by multiplying it by 1010. \newline1.25×104×10=12.5×1031.25 \times 10^{-4} \times 10 = 12.5 \times 10^{-3}. \newlineNow we can add the two terms.
  4. Addition Result: Adding the two terms: 12.5×103+0.9375×103=13.4375×10312.5 \times 10^{-3} + 0.9375 \times 10^{-3} = 13.4375 \times 10^{-3}.
  5. Express in Scientific Notation: To match the answer choices, we need to express 13.4375×10313.4375 \times 10^{-3} in scientific notation.\newline13.4375×10313.4375 \times 10^{-3} is the same as 1.34375×1021.34375 \times 10^{-2}.
  6. Round to One Decimal: Finally, we round 1.34375×1021.34375 \times 10^{-2} to one decimal place to match the answer choices.\newline1.34375×1021.34375 \times 10^{-2} rounds to 1.3×1021.3 \times 10^{-2}, which is not an option in the choices.

More problems from Power rule with rational exponents