Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of A when we rewrite 4^(x+3)-4^(x) as A*4^(x)?

A=◻

What is the value of AA when we rewrite 4x+34x4^{x+3}-4^{x} as A4xA\cdot 4^{x} ?\newlineA=A= \square

Full solution

Q. What is the value of AA when we rewrite 4x+34x4^{x+3}-4^{x} as A4xA\cdot 4^{x} ?\newlineA=A= \square
  1. Factor out 4x4^{x}: First, factor out 4x4^{x} from the expression 4x+34x4^{x+3} - 4^{x}. \newline4x+34x=4x×(431)4^{x+3} - 4^{x} = 4^{x} \times (4^{3} - 1)
  2. Calculate 434^3: Calculate 434^3 and subtract 11. \newline43=644^3 = 64, so 431=641=634^3 - 1 = 64 - 1 = 63.
  3. Determine AA: Now, we have 4x×634^{x} \times 63, which means A=63A = 63.

More problems from Convert between explicit and recursive formulas