Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


What is the sum of the series 
sqrt5-(5)/(2)+(5sqrt5)/(3)-(25)/(4)+dots+(-1)^(n)(sqrt5)/(n+1)+dots?
(A) 
ln(1+sqrt5)
(B) 
e_(sqrt5)
(C) 
ln(sqrt5)
(D) 
sqrt5
(E) The series diverges.

What is the sum of the series \newline552+553254++(1)n5n+1+\sqrt{5}-\frac{5}{2}+\frac{5\sqrt{5}}{3}-\frac{25}{4}+\dots+(-1)^{n}\frac{\sqrt{5}}{n+1}+\dots?\newline(A) ln(1+5)\ln(1+\sqrt{5})\newline(B) e5e_{\sqrt{5}}\newline(C)ln(5)\ln(\sqrt{5})\newline(D) 5\sqrt{5}\newline(E) The series diverges.

Full solution

Q. What is the sum of the series \newline552+553254++(1)n5n+1+\sqrt{5}-\frac{5}{2}+\frac{5\sqrt{5}}{3}-\frac{25}{4}+\dots+(-1)^{n}\frac{\sqrt{5}}{n+1}+\dots?\newline(A) ln(1+5)\ln(1+\sqrt{5})\newline(B) e5e_{\sqrt{5}}\newline(C)ln(5)\ln(\sqrt{5})\newline(D) 5\sqrt{5}\newline(E) The series diverges.
  1. Simplify General Term: Simplify the general term of the series: (1)n5/(n+1)(-1)^n\sqrt{5}/(n+1).
  2. Recognize Alternating Series: Recognize the series as an alternating series with a decreasing sequence 5/(n+1)\sqrt{5}/(n+1).
  3. Apply Sum Formula: Apply the formula for the sum of an alternating harmonic series with a constant multiple: ln(1+5)×5\ln(1 + \sqrt{5}) \times \sqrt{5}.

More problems from Sum of finite series starts from 1