Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the range of this quadratic function?\newliney=x28x+12y = x^2 - 8x + 12\newlineChoices:\newline(A){yy4}\{y | y \leq -4\}\newline(B){yy4}\{y | y \geq 4\}\newline(C){yy4}\{y | y \geq -4\}\newline(D)all real numbers

Full solution

Q. What is the range of this quadratic function?\newliney=x28x+12y = x^2 - 8x + 12\newlineChoices:\newline(A){yy4}\{y | y \leq -4\}\newline(B){yy4}\{y | y \geq 4\}\newline(C){yy4}\{y | y \geq -4\}\newline(D)all real numbers
  1. Identify Quadratic Function: Identify the quadratic function.\newlineWe have the quadratic function y=x28x+12y = x^2 - 8x + 12.
  2. Find Vertex x-coordinate: Find the x-coordinate of the vertex.\newlineThe x-coordinate of the vertex of a quadratic function in the form y=ax2+bx+cy = ax^2 + bx + c is given by x=b2ax = -\frac{b}{2a}. Here, a=1a = 1 and b=8b = -8.\newlinex=(8)/(21)x = -(-8)/(2\cdot 1)\newlinex=82x = \frac{8}{2}\newlinex=4x = 4
  3. Find Vertex y-coordinate: Find the y-coordinate of the vertex.\newlineSubstitute x=4x = 4 into the quadratic function to find the y-coordinate.\newliney=(4)28×(4)+12y = (4)^2 - 8\times(4) + 12\newliney=1632+12y = 16 - 32 + 12\newliney=16+12y = -16 + 12\newliney=4y = -4
  4. Determine Parabola Direction: Determine the direction of the parabola. Since a=1a = 1 and a > 0, the parabola opens upwards.
  5. Find Range of Function: Find the range of the function.\newlineThe vertex of the parabola is (4,4)(4, -4), and since the parabola opens upwards, the yy-values must be greater than or equal to the yy-coordinate of the vertex.\newlineRange: \{yy4y | y \geq -4\}

More problems from Domain and range of quadratic functions: equations