Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the range of this quadratic function?\newliney=x26x+9y = x^2 - 6x + 9\newlineChoices:\newline(A)yy0{y | y \leq 0}\newline(B)yy0{y | y \geq 0}\newline(C)yy3{y | y \geq -3}\newline(D)all real numbers

Full solution

Q. What is the range of this quadratic function?\newliney=x26x+9y = x^2 - 6x + 9\newlineChoices:\newline(A)yy0{y | y \leq 0}\newline(B)yy0{y | y \geq 0}\newline(C)yy3{y | y \geq -3}\newline(D)all real numbers
  1. Identify the quadratic function: Identify the quadratic function.\newlineWe are given the quadratic function y=x26x+9y = x^2 - 6x + 9.
  2. Find vertex x-coordinate: Find the x-coordinate of the vertex.\newlineThe x-coordinate of the vertex of a quadratic function in the form y=ax2+bx+cy = ax^2 + bx + c is given by x=b2ax = -\frac{b}{2a}. Here, a=1a = 1 and b=6b = -6.\newlinex=(6)/(21)x = -(-6)/(2\cdot 1)\newlinex=62x = \frac{6}{2}\newlinex=3x = 3
  3. Find vertex y-coordinate: Find the y-coordinate of the vertex by substituting x=3x = 3 into the equation.y=(3)26×(3)+9y = (3)^2 - 6\times(3) + 9y=918+9y = 9 - 18 + 9y=0y = 0
  4. Determine parabola direction: Determine the direction in which the parabola opens. Since a=1a = 1 and a > 0, the parabola opens upwards.
  5. Find range: Find the range of the function.\newlineThe vertex of the parabola is (3,0)(3, 0), and since the parabola opens upwards, the yy-values must be greater than or equal to the yy-coordinate of the vertex.\newlineRange: \{yy0y | y \geq 0\}

More problems from Domain and range of quadratic functions: equations