Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the range of this quadratic function?\newliney=x2+2x+1y = x^2 + 2x + 1\newlineChoices:\newline(A)yy1{y | y \geq 1}\newline(B)yy0{y | y \geq 0}\newline(C)yy0{y | y \leq 0}\newline(D)all real numbers

Full solution

Q. What is the range of this quadratic function?\newliney=x2+2x+1y = x^2 + 2x + 1\newlineChoices:\newline(A)yy1{y | y \geq 1}\newline(B)yy0{y | y \geq 0}\newline(C)yy0{y | y \leq 0}\newline(D)all real numbers
  1. Identify the quadratic function: Identify the quadratic function.\newlineWe have the quadratic function y=x2+2x+1y = x^2 + 2x + 1.
  2. Find vertex x-coordinate: Find the x-coordinate of the vertex.\newlineThe general form of a quadratic function is y=ax2+bx+cy = ax^2 + bx + c. To find the x-coordinate of the vertex, use the formula x=b2ax = -\frac{b}{2a}.\newlineFor our function, a=1a = 1 and b=2b = 2.\newlinex=221x = -\frac{2}{2\cdot 1}\newlinex=22x = -\frac{2}{2}\newlinex=1x = -1
  3. Find vertex y-coordinate: Find the y-coordinate of the vertex by substituting x=1x = -1 into the function.\newliney=(1)2+2(1)+1y = (-1)^2 + 2(-1) + 1\newliney=12+1y = 1 - 2 + 1\newliney=0y = 0
  4. Determine parabola direction: Determine the direction in which the parabola opens. Since a=1a = 1 and a > 0, the parabola opens upwards.
  5. Find range: Find the range of the function.\newlineThe vertex of the parabola is (1,0)(-1, 0), and since the parabola opens upwards, the yy-values must be greater than or equal to the yy-coordinate of the vertex.\newlineTherefore, the range of the function is \{ yy | y0y \geq 0 \}.

More problems from Domain and range of quadratic functions: equations