Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the range of this quadratic function?\newliney=x212x+27y = x^2 - 12x + 27\newlineChoices:\newline(A)yy9{y | y \geq 9}\newline(B)yy6{y | y \geq 6}\newline(C)yy9{y | y \geq -9}\newline(D)all real numbers

Full solution

Q. What is the range of this quadratic function?\newliney=x212x+27y = x^2 - 12x + 27\newlineChoices:\newline(A)yy9{y | y \geq 9}\newline(B)yy6{y | y \geq 6}\newline(C)yy9{y | y \geq -9}\newline(D)all real numbers
  1. Identify quadratic function: Identify the quadratic function.\newlineWe have the quadratic function y=x212x+27y = x^2 - 12x + 27. We need to find the range of this function.
  2. Find vertex x-coordinate: Find the x-coordinate of the vertex.\newlineThe x-coordinate of the vertex of a quadratic function in the form y=ax2+bx+cy = ax^2 + bx + c is given by x=b2ax = -\frac{b}{2a}. Here, a=1a = 1 and b=12b = -12.\newlinex=(12)/(21)x = -(-12)/(2\cdot 1)\newlinex=122x = \frac{12}{2}\newlinex=6x = 6
  3. Find vertex y-coordinate: Find the y-coordinate of the vertex.\newlineSubstitute x=6x = 6 into the quadratic function to find the corresponding y-coordinate.\newliney=(6)212(6)+27y = (6)^2 - 12(6) + 27\newliney=3672+27y = 36 - 72 + 27\newliney=36+27y = -36 + 27\newliney=9y = -9
  4. Determine parabola direction: Determine the direction of the parabola. Since a=1a = 1 and a > 0, the parabola opens upwards.
  5. Find range of function: Find the range of the function.\newlineThe vertex of the parabola is (6,9)(6, -9), and since the parabola opens upwards, the yy-values must be greater than or equal to the yy-coordinate of the vertex.\newlineRange: \{yy9y | y \geq -9\}

More problems from Domain and range of quadratic functions: equations