Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the midline equation of

{:[y=8cos(5pi x+(3pi)/(2))-9?],[y=◻]:}

What is the midline equation of\newliney=8cos(5πx+3π2)9?y= \begin{array}{l} y=8 \cos \left(5 \pi x+\frac{3 \pi}{2}\right)-9 ? \\ y=\square \end{array}

Full solution

Q. What is the midline equation of\newliney=8cos(5πx+3π2)9?y= \begin{array}{l} y=8 \cos \left(5 \pi x+\frac{3 \pi}{2}\right)-9 ? \\ y=\square \end{array}
  1. Identify Midline: The midline of a trigonometric function of the form y=Acos(Bx+C)+Dy = A\cos(Bx + C) + D or y=Asin(Bx+C)+Dy = A\sin(Bx + C) + D is the horizontal line y=Dy = D, where DD is the vertical shift of the function.
  2. Determine Function Parameters: In the given function y=8cos(5πx+3π2)9y = 8\cos(5\pi x + \frac{3\pi}{2}) - 9, the coefficient AA is 88, BB is 5π5\pi, CC is 3π2\frac{3\pi}{2}, and the vertical shift DD is 9-9.
  3. Calculate Midline Equation: Therefore, the midline equation of the given function is the horizontal line y=9y = -9.

More problems from Multiply using the distributive property