Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the inverse of the function h(x)=32(x11)? h(x)=\frac{3}{2}(x-11)? \newlineh1(x)= h^{-1}(x)=\square

Full solution

Q. What is the inverse of the function h(x)=32(x11)? h(x)=\frac{3}{2}(x-11)? \newlineh1(x)= h^{-1}(x)=\square
  1. Understand Inverse Function: Understand the concept of an inverse function. An inverse function, denoted as h1(x)h^{-1}(x), is a function that reverses the effect of the original function h(x)h(x). For a function h(x)h(x), the inverse h1(x)h^{-1}(x) will satisfy the condition that h(h1(x))=xh(h^{-1}(x)) = x and h1(h(x))=xh^{-1}(h(x)) = x.
  2. Write Original Function: Write down the original function.\newlineThe original function is given as h(x)=(32)(x11)h(x) = \left(\frac{3}{2}\right)(x - 11).
  3. Replace with yy: Replace h(x)h(x) with yy to make the equation easier to work with.\newliney=(32)(x11)y = \left(\frac{3}{2}\right)(x - 11)
  4. Swap x and y: Swap x and y to find the inverse function.\newlinex=32(y11)x = \frac{3}{2}(y - 11)
  5. Solve for yy: Solve for yy to find the inverse function.\newlineMultiply both sides by 23\frac{2}{3} to isolate the term with yy:\newline(23)x=y11\left(\frac{2}{3}\right)x = y - 11
  6. Add 1111 to Solve: Add 1111 to both sides to solve for yy. \newliney=(23)x+11y = \left(\frac{2}{3}\right)x + 11
  7. Replace with Inverse: Replace yy with h1(x)h^{-1}(x) to denote the inverse function.h1(x)=23x+11h^{-1}(x) = \frac{2}{3}x + 11

More problems from Find the vertex of the transformed function