Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the inverse of the function

{:[f(x)=-6x-7?],[f^(-1)(x)=◻]:}

What is the inverse of the function f(x)=6x7 f(x) = -6x - 7 ? f1(x)= f^{-1}(x) = \square

Full solution

Q. What is the inverse of the function f(x)=6x7 f(x) = -6x - 7 ? f1(x)= f^{-1}(x) = \square
  1. Understand Inverse Function: Understand the concept of an inverse function.\newlineThe inverse function, denoted as f1(x) f^{-1}(x) , swaps the roles of the input and output of the original function f(x) f(x) . To find the inverse, we solve for x x in terms of y y and then swap x x and y y .
  2. Write Original Function: Write the original function with y y instead of f(x) f(x) .\newliney=6x7 y = -6x - 7
  3. Swap Variables: Swap x x and y y to begin finding the inverse.\newlinex=6y7 x = -6y - 7
  4. Solve for Inverse: Solve for y y to find the inverse function.\newlineAdd 77 to both sides of the equation:\newlinex+7=6y x + 7 = -6y \newlineNow, divide both sides by 6-6 to solve for y y :\newliney=x+76 y = \frac{x + 7}{-6}
  5. Write Inverse Function: Write the inverse function.\newlineThe inverse function is f1(x)=x+76 f^{-1}(x) = \frac{x + 7}{-6} .

More problems from Find the vertex of the transformed function