Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the conjugate of 
-(7)/(5)+(3)/(5)i ?

(3)/(5)-(7)/(5)i

(7)/(5)-(3)/(5)i

(7)/(5)+(3)/(5)i

-(7)/(5)-(3)/(5)i

What is the conjugate of 75+35i -\frac{7}{5}+\frac{3}{5} i ?\newline3575i \frac{3}{5}-\frac{7}{5} i \newline7535i \frac{7}{5}-\frac{3}{5} i \newline75+35i \frac{7}{5}+\frac{3}{5} i \newline7535i -\frac{7}{5}-\frac{3}{5} i

Full solution

Q. What is the conjugate of 75+35i -\frac{7}{5}+\frac{3}{5} i ?\newline3575i \frac{3}{5}-\frac{7}{5} i \newline7535i \frac{7}{5}-\frac{3}{5} i \newline75+35i \frac{7}{5}+\frac{3}{5} i \newline7535i -\frac{7}{5}-\frac{3}{5} i
  1. Understand complex conjugate: Understand the concept of a complex conjugate. The conjugate of a complex number a+bia + bi is abia - bi, where aa and bb are real numbers.
  2. Identify real and imaginary parts: Identify the real and imaginary parts of the given complex number. The given complex number is (75)+(35)i-(\frac{7}{5}) + (\frac{3}{5})i. Here, the real part is (75)-(\frac{7}{5}) and the imaginary part is (35)(\frac{3}{5}).
  3. Apply conjugate rule: Apply the conjugate rule to the given complex number.\newlineTo find the conjugate, we change the sign of the imaginary part. Therefore, the conjugate of 75+35i-\frac{7}{5} + \frac{3}{5}i is 7535i-\frac{7}{5} - \frac{3}{5}i.

More problems from Multiplication with rational exponents