Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the conjugate of 
-(7)/(2)+(1)/(2)i ?

-(7)/(2)-(1)/(2)i

(7)/(2)-(1)/(2)i

(1)/(2)-(7)/(2)i

(7)/(2)+(1)/(2)i

What is the conjugate of 72+12i -\frac{7}{2}+\frac{1}{2} i ?\newline7212i -\frac{7}{2}-\frac{1}{2} i \newline7212i \frac{7}{2}-\frac{1}{2} i \newline1272i \frac{1}{2}-\frac{7}{2} i \newline72+12i \frac{7}{2}+\frac{1}{2} i

Full solution

Q. What is the conjugate of 72+12i -\frac{7}{2}+\frac{1}{2} i ?\newline7212i -\frac{7}{2}-\frac{1}{2} i \newline7212i \frac{7}{2}-\frac{1}{2} i \newline1272i \frac{1}{2}-\frac{7}{2} i \newline72+12i \frac{7}{2}+\frac{1}{2} i
  1. Understand concept of conjugate: Understand the concept of a conjugate. The conjugate of a complex number is obtained by changing the sign of the imaginary part. The real part remains unchanged.
  2. Identify real and imaginary parts: Identify the real and imaginary parts of the given complex number.\newlineThe given complex number is 72+12i-\frac{7}{2} + \frac{1}{2}i. Here, the real part is 72-\frac{7}{2}, and the imaginary part is 12i\frac{1}{2}i.
  3. Change sign for conjugate: Change the sign of the imaginary part to find the conjugate.\newlineThe conjugate of the given complex number is obtained by changing the sign of the imaginary part from positive to negative, while keeping the real part the same.\newlineSo, the conjugate of 72+12i-\frac{7}{2} + \frac{1}{2}i is 7212i-\frac{7}{2} - \frac{1}{2}i.

More problems from Multiplication with rational exponents