Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the conjugate of 
(5)/(4)-(3)/(4)i?

-(3)/(4)+(5)/(4)i

-(5)/(4)-(3)/(4)i

(5)/(4)+(3)/(4)i

-(5)/(4)+(3)/(4)i

What is the conjugate of 5434i? \frac{5}{4}-\frac{3}{4} i ? \newline34+54i -\frac{3}{4}+\frac{5}{4} i \newline5434i -\frac{5}{4}-\frac{3}{4} i \newline54+34i \frac{5}{4}+\frac{3}{4} i \newline54+34i -\frac{5}{4}+\frac{3}{4} i

Full solution

Q. What is the conjugate of 5434i? \frac{5}{4}-\frac{3}{4} i ? \newline34+54i -\frac{3}{4}+\frac{5}{4} i \newline5434i -\frac{5}{4}-\frac{3}{4} i \newline54+34i \frac{5}{4}+\frac{3}{4} i \newline54+34i -\frac{5}{4}+\frac{3}{4} i
  1. Identify Complex Number: The conjugate of a complex number is found by changing the sign of the imaginary part. The complex number given is (54)(34)i(\frac{5}{4}) - (\frac{3}{4})i.
  2. Find Conjugate: To find the conjugate, we keep the real part the same, which is (54)(\frac{5}{4}), and change the sign of the imaginary part from (34)i-\left(\frac{3}{4}\right)i to +(34)i+\left(\frac{3}{4}\right)i.
  3. Final Result: Therefore, the conjugate of (54)(34)i(\frac{5}{4}) - (\frac{3}{4})i is (54)+(34)i(\frac{5}{4}) + (\frac{3}{4})i.

More problems from Multiplication with rational exponents