Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the conjugate of 
-(5)/(4)+(3)/(4)i ?

(3)/(4)-(5)/(4)i

(5)/(4)+(3)/(4)i

-(5)/(4)-(3)/(4)i

(5)/(4)-(3)/(4)i

What is the conjugate of 54+34i -\frac{5}{4}+\frac{3}{4} i ?\newline3454i \frac{3}{4}-\frac{5}{4} i \newline54+34i \frac{5}{4}+\frac{3}{4} i \newline5434i -\frac{5}{4}-\frac{3}{4} i \newline5434i \frac{5}{4}-\frac{3}{4} i

Full solution

Q. What is the conjugate of 54+34i -\frac{5}{4}+\frac{3}{4} i ?\newline3454i \frac{3}{4}-\frac{5}{4} i \newline54+34i \frac{5}{4}+\frac{3}{4} i \newline5434i -\frac{5}{4}-\frac{3}{4} i \newline5434i \frac{5}{4}-\frac{3}{4} i
  1. Understand Conjugate Concept: Understand the concept of a conjugate. The conjugate of a complex number a+bia + bi is abia - bi, where aa and bb are real numbers. The conjugate is found by changing the sign of the imaginary part of the complex number.
  2. Identify Real and Imaginary Parts: Identify the real and imaginary parts of the given complex number.\newlineThe given complex number is 54+34i-\frac{5}{4} + \frac{3}{4}i. Here, the real part is 54-\frac{5}{4} and the imaginary part is 34i\frac{3}{4}i.
  3. Change Imaginary Part: Change the sign of the imaginary part to find the conjugate. The conjugate of (54)+(34)i-\left(\frac{5}{4}\right) + \left(\frac{3}{4}\right)i is obtained by changing the sign of the imaginary part from + to -. Therefore, the conjugate is (54)(34)i-\left(\frac{5}{4}\right) - \left(\frac{3}{4}\right)i.

More problems from Multiplication with rational exponents