Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the conjugate of 
(1)/(8)+(3)/(8)i ?

-(1)/(8)+(3)/(8)i

(1)/(8)-(3)/(8)i

(3)/(8)+(1)/(8)i

-(1)/(8)-(3)/(8)i

What is the conjugate of 18+38i \frac{1}{8}+\frac{3}{8} i ?\newline18+38i -\frac{1}{8}+\frac{3}{8} i \newline1838i \frac{1}{8}-\frac{3}{8} i \newline38+18i \frac{3}{8}+\frac{1}{8} i \newline1838i -\frac{1}{8}-\frac{3}{8} i

Full solution

Q. What is the conjugate of 18+38i \frac{1}{8}+\frac{3}{8} i ?\newline18+38i -\frac{1}{8}+\frac{3}{8} i \newline1838i \frac{1}{8}-\frac{3}{8} i \newline38+18i \frac{3}{8}+\frac{1}{8} i \newline1838i -\frac{1}{8}-\frac{3}{8} i
  1. Understand Complex Conjugate: Understand the concept of a complex conjugate. The conjugate of a complex number a+bia + bi is abia - bi, where aa and bb are real numbers.
  2. Identify Real and Imaginary Parts: Identify the real and imaginary parts of the given complex number.\newlineThe given complex number is (18)+(38)i(\frac{1}{8}) + (\frac{3}{8})i, where the real part is (18)(\frac{1}{8}) and the imaginary part is (38)(\frac{3}{8}).
  3. Apply Conjugate Rule: Apply the conjugate rule to the given complex number.\newlineTo find the conjugate, we change the sign of the imaginary part. Therefore, the conjugate of (18)+(38)i(\frac{1}{8}) + (\frac{3}{8})i is (18)(38)i(\frac{1}{8}) - (\frac{3}{8})i.

More problems from Multiplication with rational exponents