Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the conjugate of 
-(1)/(3)-(5)/(3)i ?

(1)/(3)+(5)/(3)i

-(1)/(3)+(5)/(3)i

-(5)/(3)-(1)/(3)i

(1)/(3)-(5)/(3)i

What is the conjugate of 1353i -\frac{1}{3}-\frac{5}{3} i ?\newline13+53i \frac{1}{3}+\frac{5}{3} i \newline13+53i -\frac{1}{3}+\frac{5}{3} i \newline5313i -\frac{5}{3}-\frac{1}{3} i \newline1353i \frac{1}{3}-\frac{5}{3} i

Full solution

Q. What is the conjugate of 1353i -\frac{1}{3}-\frac{5}{3} i ?\newline13+53i \frac{1}{3}+\frac{5}{3} i \newline13+53i -\frac{1}{3}+\frac{5}{3} i \newline5313i -\frac{5}{3}-\frac{1}{3} i \newline1353i \frac{1}{3}-\frac{5}{3} i
  1. Find Conjugate: The conjugate of a complex number a+bia + bi is abia - bi. To find the conjugate, we simply change the sign of the imaginary part.
  2. Calculate Conjugate: Given the complex number 1353i-\frac{1}{3}-\frac{5}{3}i, its conjugate will be 13+53i-\frac{1}{3}+\frac{5}{3}i, because we change the sign of the imaginary part from negative to positive.
  3. Check Options: Check the options to see which one matches our calculated conjugate.
  4. Identify Correct Option: The correct option that matches the calculated conjugate is: 13+53i-\frac{1}{3}+\frac{5}{3}i.

More problems from Multiplication with rational exponents