Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the conjugate of 
-(1)/(2)-(3)/(2)i ?

-(3)/(2)-(1)/(2)i

-(1)/(2)+(3)/(2)i

(1)/(2)+(3)/(2)i

(1)/(2)-(3)/(2)i

What is the conjugate of 1232i -\frac{1}{2}-\frac{3}{2} i ?\newline3212i -\frac{3}{2}-\frac{1}{2} i \newline12+32i -\frac{1}{2}+\frac{3}{2} i \newline12+32i \frac{1}{2}+\frac{3}{2} i \newline1232i \frac{1}{2}-\frac{3}{2} i

Full solution

Q. What is the conjugate of 1232i -\frac{1}{2}-\frac{3}{2} i ?\newline3212i -\frac{3}{2}-\frac{1}{2} i \newline12+32i -\frac{1}{2}+\frac{3}{2} i \newline12+32i \frac{1}{2}+\frac{3}{2} i \newline1232i \frac{1}{2}-\frac{3}{2} i
  1. Identify Complex Number: The conjugate of a complex number is found by changing the sign of the imaginary part. The complex number in question is (12)(32)i-(\frac{1}{2})-(\frac{3}{2})i.
  2. Find Conjugate: To find the conjugate, we keep the real part the same, which is (1)/(2)-(1)/(2), and change the sign of the imaginary part from (3)/(2)i-(3)/(2)i to +(3)/(2)i+(3)/(2)i.
  3. Final Result: Therefore, the conjugate of (12)(32)i-(\frac{1}{2})-(\frac{3}{2})i is (12)+(32)i-(\frac{1}{2})+(\frac{3}{2})i.

More problems from Multiplication with rational exponents