Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the average value of 
8-2x^(3) on the interval 
[2,4] ?

What is the average value of 82x3 8-2 x^{3} on the interval [2,4] [2,4] ?

Full solution

Q. What is the average value of 82x3 8-2 x^{3} on the interval [2,4] [2,4] ?
  1. Set up integral: To find the average value of the function 82x38 - 2x^3 on the interval [2,4][2,4], we need to integrate the function over the interval and then divide by the length of the interval.
  2. Calculate integral: First, let's set up the integral for the function over the interval [2,4][2,4]. The average value formula is given by:\newlineAverage value = 1(ba)abf(x)dx\frac{1}{(b-a)} \cdot \int_{a}^{b} f(x) \, dx\newlineHere, a=2a = 2, b=4b = 4, and f(x)=82x3f(x) = 8 - 2x^3.
  3. Evaluate antiderivative: Now, we calculate the integral of f(x)f(x) from 22 to 44.24(82x3)dx\int_{2}^{4} (8 - 2x^3) \,dx=[8x(12)2x4]24= [8x - (\frac{1}{2}) \cdot 2x^4]_{2}^{4}=[8xx4]24= [8x - x^4]_{2}^{4}
  4. Divide by interval length: Next, we evaluate the antiderivative at the upper and lower limits of the interval.\newline=(8×444)(8×224)= (8\times4 - 4^4) - (8\times2 - 2^4)\newline=(32256)(1616)= (32 - 256) - (16 - 16)\newline=2240= -224 - 0\newline=224= -224
  5. Divide by interval length: Next, we evaluate the antiderivative at the upper and lower limits of the interval.\newline=(8444)(8224)= (8\cdot4 - 4^4) - (8\cdot2 - 2^4)\newline=(32256)(1616)= (32 - 256) - (16 - 16)\newline=2240= -224 - 0\newline=224= -224Now, we divide the result of the integral by the length of the interval, which is ba=42=2b - a = 4 - 2 = 2.\newlineAverage value =(224)/(42)= (-224) / (4 - 2)\newlineAverage value =(224)/2= (-224) / 2\newlineAverage value =112= -112